Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
RSC Med Chem ; 12(5): 767-778, 2021 Apr 19.
Article in English | MEDLINE | ID: mdl-34124675

ABSTRACT

Novel chemotherapeutic strategies for acute myeloid leukemia (AML) treatment are called for. We have recently demonstrated that the phenazine 5,10-dioxide natural products iodinin (3) and myxin (4) exhibit potent and hypoxia-selective cell death on MOLM-13 human AML cells, and that the N-oxide functionalities are pivotal for the cytotoxic activity. Very few structure-activity relationship studies dedicated to phenazine 5,10-dioxides exist on mammalian cell lines and the present work describes our efforts regarding in vitro lead optimizations of the natural compounds iodinin (3) and myxin (4). Prodrug strategies reveal carbamate side chains to be the optimal phenol-attached group. Derivatives with no oxygen-based substituent (-OH or -OCH3) in the 6th position of the phenazine skeleton upheld potency if alkyl or carbamate side chains were attached to the phenol in position 1. 7,8-Dihalogenated- and 7,8-dimethylated analogs of 1-hydroxyphenazine 5,10-dioxide (21) displayed increased cytotoxic potency in MOLM-13 cells compared to all the other compounds studied. On the other hand, dihalogenated compounds displayed high toxicity towards the cardiomyoblast H9c2 cell line, while MOLM-13 selectivity of the 7,8-dimethylated analogs were less affected. Further, a parallel artificial membrane permeability assay (PAMPA) demonstrated the majority of the synthesized compounds to penetrate cell membranes efficiently, which corresponded to their cytotoxic potency. This work enhances the understanding of the structural characteristics essential for the activity of phenazine 5,10-dioxides, rendering them promising chemotherapeutic agents.

2.
Molecules ; 27(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35011288

ABSTRACT

Inhibition of bacterial virulence is believed to be a new treatment option for bacterial infections. In the present study, we tested dipicolylamine (DPA), tripicolylamine (TPA), tris pyridine ethylene diamine (TPED), pyridine and thiophene derivatives as putative inhibitors of the bacterial virulence factors thermolysin (TLN), pseudolysin (PLN) and aureolysin (ALN) and the human zinc metalloproteases, matrix metalloprotease-9 (MMP-9) and matrix metalloprotease-14 (MMP-14). These compounds have nitrogen or sulfur as putative donor atoms for zinc chelation. In general, the compounds showed stronger inhibition of MMP-14 and PLN than of the other enzymes, with Ki values in the lower µM range. Except for DPA, none of the compounds showed significantly stronger inhibition of the virulence factors than of the human zinc metalloproteases. TPA and Zn230 were the only compounds that inhibited all five zinc metalloproteinases with a Ki value in the lower µM range. The thiophene compounds gave weak or no inhibition. Docking indicated that some of the compounds coordinated zinc by one oxygen atom from a hydroxyl or carbonyl group, or by oxygen atoms both from a hydroxyl group and a carbonyl group, and not by pyridine nitrogen as in DPA and TPA.


Subject(s)
Chelating Agents/chemistry , Chelating Agents/pharmacology , Metalloproteases/antagonists & inhibitors , Metalloproteases/chemistry , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Zinc Compounds/chemistry , Zinc Compounds/pharmacology , Amino Acids , Bacteria/drug effects , Bacteria/enzymology , Catalytic Domain , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Humans , Models, Molecular , Molecular Conformation , Molecular Structure , Structure-Activity Relationship
3.
Article in English | MEDLINE | ID: mdl-32179522

ABSTRACT

Carbapenem-resistant Gram-negative pathogens are a critical public health threat and there is an urgent need for new treatments. Carbapenemases (ß-lactamases able to inactivate carbapenems) have been identified in both serine ß-lactamase (SBL) and metallo-ß-lactamase (MBL) families. The recent introduction of SBL carbapenemase inhibitors has provided alternative therapeutic options. Unfortunately, there are no approved inhibitors of MBL-mediated carbapenem-resistance and treatment options for infections caused by MBL-producing Gram-negatives are limited. Here, we present ZN148, a zinc-chelating MBL-inhibitor capable of restoring the bactericidal effect of meropenem and in vitro clinical susceptibility to carbapenems in >98% of a large international collection of MBL-producing clinical Enterobacterales strains (n = 234). Moreover, ZN148 was able to potentiate the effect of meropenem against NDM-1-producing Klebsiella pneumoniae in a murine neutropenic peritonitis model. ZN148 showed no inhibition of the human zinc-containing enzyme glyoxylase II at 500 µM, and no acute toxicity was observed in an in vivo mouse model with cumulative dosages up to 128 mg/kg. Biochemical analysis showed a time-dependent inhibition of MBLs by ZN148 and removal of zinc ions from the active site. Addition of exogenous zinc after ZN148 exposure only restored MBL activity by ∼30%, suggesting an irreversible mechanism of inhibition. Mass-spectrometry and molecular modeling indicated potential oxidation of the active site Cys221 residue. Overall, these results demonstrate the therapeutic potential of a ZN148-carbapenem combination against MBL-producing Gram-negative pathogens and that ZN148 is a highly promising MBL inhibitor that is capable of operating in a functional space not presently filled by any clinically approved compound.


Subject(s)
beta-Lactamase Inhibitors , beta-Lactamases , Animals , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Meropenem/pharmacology , Mice , beta-Lactam Resistance , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/genetics
4.
Front Chem ; 7: 835, 2019.
Article in English | MEDLINE | ID: mdl-31850321

ABSTRACT

Prior to mass spectrometry, on-line sample preparation can be beneficial to reduce manual steps, increase speed, and enable analysis of limited sample amounts. For example, bottom-up proteomics sample preparation and analysis can be accelerated by digesting proteins to peptides in an on-line enzyme reactor. We here focus on low-backpressure 100 µm inner diameter (ID) × 160 mm, 180 µm ID × 110 mm or 250 µm ID × 140 mm vinyl azlactone-co-ethylene dimethacrylate [poly(VDM-co-EDMA)] monoliths as supports for immobilizing of additional molecules (i.e., proteases or drugs), as the monolith was expected to have few unspecific interactions. For on-line protein digestion, monolith supports immobilized with trypsin enzyme were found to be suited, featuring the expected characteristics of the material, i.e., low backpressure and low carry-over. Serving as a functionalized sample loop, the monolith units were very simple to connect on-line with liquid chromatography. However, for on-line target deconvolution, the monolithic support immobilized with a Wnt pathway inhibitor was associated with numerous secondary interactions when exploring the possibility of selectively trapping target proteins by drug-target interactions. Our initial observations suggest that (poly(VDM-co-EDMA)) monoliths are promising for e.g., on-line bottom-up proteomics, but not a "fit-for-all" material. We also discuss issues related to the repeatability of monolith-preparations.

5.
Beilstein J Org Chem ; 15: 2156-2160, 2019.
Article in English | MEDLINE | ID: mdl-31579067

ABSTRACT

We present a short and efficient way of synthesizing two synthetically versatile 4-quinolone-3-carboxylate building blocks by cyclopropanation-ring expansion of 3-chloroindoles with α-halodiazoacetates as the key step. This novel transformation was applied towards the synthesis of the antibiotic drug norfloxacin.

6.
J Enzyme Inhib Med Chem ; 34(1): 1321-1346, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31328585

ABSTRACT

For over half a century, the carbazole skeleton has been the key structural motif of many biologically active compounds including natural and synthetic products. Carbazoles have taken an important part in all the existing anti-cancer drugs because of their discovery from a large variety of organisms, including bacteria, fungi, plants, and animals. In this article, we specifically explored the literature from 2012 to 2018 on the anti-tumour activities reported to carbazole derivatives and we have critically collected the most significant data. The most described carbazole anti-tumour agents were classified according to their structure, starting from the tricyclic-carbazole motif to fused tetra-, penta-, hexa- and heptacyclic carbazoles. To date, three derivatives are available on the market and approved in cancer therapy.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Carbazoles/chemistry , Carbazoles/pharmacology , Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Humans , Molecular Structure , Neoplasms/pathology
7.
Medchemcomm ; 10(4): 528-537, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-31057732

ABSTRACT

The syntheses of metallo-ß-lactamase inhibitors comprising chelating moieties, with varying zinc affinities, and peptides partly inspired from bacterial peptide sequences, have been undertaken. The zinc chelator strength was varied using the following chelators, arranged in order of ascending binding affinity: dipicolylamine (DPA, tridentate), dipicolyl-1,2,3-triazolylmethylamine (DPTA, tetradentate) dipicolyl ethylenediamine (DPED, tetradentate) and trispicolyl ethylenediamine (TPED, pentadentate). The chosen peptides were mainly based on the known sequence of the C-terminus of the bacterial peptidoglycan precursors. Biological evaluation on clinical bacterial isolates, harbouring either the NDM-1 or VIM-2 metallo-ß-lactamase, showed a clear relationship between the zinc chelator strength and restoration of meropenem activity. However, evaluation of toxicity on different cancer cell lines demonstrated a similar trend, and thus inclusion of the bacterial peptides did possess rather high toxicity towards eukaryotic cells.

8.
ACS Infect Dis ; 4(9): 1407-1422, 2018 09 14.
Article in English | MEDLINE | ID: mdl-30022668

ABSTRACT

The rise of antimicrobial resistance (AMR) worldwide and the increasing spread of multi-drug-resistant organisms expressing metallo-ß-lactamases (MBL) require the development of efficient and clinically available MBL inhibitors. At present, no such inhibitor is available, and research is urgently needed to advance this field. We report herein the development, synthesis, and biological evaluation of chemical compounds based on the selective zinc chelator tris-picolylamine (TPA) that can restore the bactericidal activity of Meropenem (MEM) against Pseudomonas aeruginosa and Klebsiella pneumoniae expressing carbapenemases Verona integron-encoded metallo-ß-lactamase (VIM-2) and New Delhi metallo-ß-lactamase 1 (NDM-1), respectively. These adjuvants were prepared via standard chemical methods and evaluated in biological assays for potentiation of MEM against bacteria and toxicity (IC50) against HepG2 human liver carcinoma cells. One of the best compounds, 15, lowered the minimum inhibitory concentration (MIC) of MEM by a factor of 32-256 at 50 µM within all tested MBL-expressing clinical isolates and showed no activity toward serine carbapenemase expressing isolates. Biochemical assays with purified VIM-2 and NDM-1 and 15 resulted in inhibition kinetics with kinact/ KI of 12.5 min-1 mM-1 and 0.500 min-1 mM-1, respectively. The resistance frequency of 15 at 50 µM was in the range of 10-7 to 10-9. 15 showed good tolerance in HepG2 cells with an IC50 well above 100 µM, and an in vivo study in mice showed no acute toxic effects even at a dose of 128 mg/kg.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Chelating Agents/chemical synthesis , Chelating Agents/pharmacology , Pyridines/chemical synthesis , Pyridines/pharmacology , beta-Lactamase Inhibitors/chemical synthesis , beta-Lactamase Inhibitors/pharmacology , Anti-Bacterial Agents/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Chelating Agents/chemistry , Drug Design , Drug Evaluation, Preclinical , Humans , Klebsiella Infections/microbiology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Meropenem/pharmacology , Microbial Sensitivity Tests , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Pyridines/chemistry , Zinc/chemistry , Zinc/metabolism , beta-Lactamase Inhibitors/chemistry , beta-Lactamases/chemistry , beta-Lactamases/metabolism
9.
J Enzyme Inhib Med Chem ; 33(1): 370-375, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29336193

ABSTRACT

Phenazine is known to regroup planar nitrogen-containing heterocyclic compounds. It was used here to enhance the bioavailability of the biologically important compound iodinin, which is near insoluble in aqueous solutions. Its water solubility has led to the development of new formulations using diverse amphiphilic α-cyclodextrins (CDs). With the per-[6-desoxy-6-(3-perfluorohexylpropanethio)-2,3-di-O-methyl]-α-CD, we succeeded to get iodinin-loaded nanoformulations with good parameters such as a size of 97.9 nm, 62% encapsulation efficiency and efficient control release. The study presents an interesting alternative to optimizing the water solubility of iodinin by chemical modifications of iodinin.


Subject(s)
Nanoparticles/chemistry , Phenazines/chemistry , alpha-Cyclodextrins/chemistry , Animals , Apoptosis/drug effects , Cell Line, Tumor , Dose-Response Relationship, Drug , Molecular Structure , Particle Size , Phenazines/pharmacology , Rats , Solubility , Structure-Activity Relationship , Surface Properties , alpha-Cyclodextrins/pharmacology
10.
Bioorg Med Chem ; 25(7): 2285-2293, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28284865

ABSTRACT

A new efficient total synthesis of the phenazine 5,10-dioxide natural products iodinin and myxin and new compounds derived from them was achieved in few steps, a key-step being 1,6-dihydroxyphenazine di-N-oxidation. Analogues prepared from iodinin, including myxin and 2-ethoxy-2-oxoethoxy derivatives, had fully retained cytotoxic effect against human cancer cells (MOLM-13 leukemia) at atmospheric and low oxygen level. Moreover, iodinin was for the first time shown to be hypoxia selective. The structure-activity relationship for leukemia cell death induction revealed that the level of N-oxide functionality was essential for cytotoxicity. It also revealed that only one of the two phenolic functions is required for activity, allowing the other one to be modified without loss of potency.


Subject(s)
Biological Products/chemical synthesis , Biological Products/pharmacology , Cell Line, Tumor , Humans , Phenazines/chemical synthesis , Phenazines/chemistry , Phenazines/pharmacology , Structure-Activity Relationship
11.
Steroids ; 118: 119-127, 2017 02.
Article in English | MEDLINE | ID: mdl-28011133

ABSTRACT

The endogenous oxysterol 22(R)-hydroxycholesterol (22RHC, 1) is an LXR agonist which upregulates genes of critical involvement in human cholesterol- and lipid metabolism. In contrast, its synthetic epimer 22(S)-hydroxycholesterol (22SHC, 8) has shown specific antagonistic effects in recent studies, avoiding unwanted side effects provided by potent LXR agonists. In terms of LXR modulation, the aim of this study was to compare 22SHC (8), 22RHC (1) and synthesized ligands with keto- and amide functionality in the 22nd position of the cholesterol scaffold. 22SHC (8) and 22RHC (1) performed as expected while 22-ketocholesterol (22KC, 10) revealed an attractive in vitro profile for further investigation in terms of anti-atherosclerotic properties as selective upregulation of the ATP-binding cassette transporter ABCA1 was observed. A new synthesized amide derivate, Fernholtz cyclohexylamide (13) was shown to reduce lipogenesis in a dose-responsive manner and abolish the effect of the potent LXR agonist T0901317 when administered simultaneously.


Subject(s)
Liver X Receptors/metabolism , Oxysterols/metabolism , Cholesterol/analogs & derivatives , Cholesterol/chemistry , Cholesterol/metabolism , Hep G2 Cells , Humans , Magnetic Resonance Spectroscopy , Molecular Structure , Real-Time Polymerase Chain Reaction , Steroids/chemistry , Steroids/metabolism
12.
J Steroid Biochem Mol Biol ; 165(Pt B): 323-330, 2017 01.
Article in English | MEDLINE | ID: mdl-27471149

ABSTRACT

Liver X Receptor (LXR) modulators have shown potential as drugs since they target genes affecting metabolism and fatty acid synthesis. LXR antagonists are of particular interest since they are able to reduce the synthesis of complex fatty acids and glucose uptake. Based on molecular modeling, five new cholesterol mimics were synthesized, where four contained a hydroxyl group in the 22-S-position. The new compounds were screened in vitro against several genes affecting lipid metabolism. The compound that performed best in vitro was a dimethylamide derivative of 22(S)-hydroxycholesterol and it was chosen for in vivo testing. However, the blood plasma analysis from the in vivo tests revealed a concentration lower than needed to give any response, indicating either rapid metabolism or low bioavailability.


Subject(s)
Liver X Receptors/antagonists & inhibitors , Oxysterols/chemistry , ATP Binding Cassette Transporter 1/metabolism , Amides/chemistry , Animals , Cholesterol/chemistry , Drug Design , Fatty Acid Synthase, Type I/metabolism , Gene Expression , Glucose/chemistry , Hep G2 Cells , Humans , Lipogenesis , Male , Molecular Docking Simulation , Protein Binding , Rats , Rats, Wistar , Stearoyl-CoA Desaturase/metabolism , Triglycerides/chemistry , Weight Gain
13.
Acta Crystallogr E Crystallogr Commun ; 71(Pt 3): 275-7, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25844186

ABSTRACT

The literature compound 3ß-hy-droxy-bis-nor-5-cholenic aldehyde is an important inter-mediate for the synthesis of new modulators of the nuclear oxysterol receptor Liver X. As part of our ongoing search for new LXR antagonists, the title compound, C24H39NO3, has proven to be an important inter-mediate in our new synthetic pathway, giving the corresponding aldehyde in high yield and in only three steps from the commercially available 3ß-hy-droxy-bis-nor-5-cholenic acid. The title amide crystallized with two mol-ecules in the asymmetric unit, linked into helices by O-H⋯O hydrogen bonds involving the hy-droxy and carbonyl groups.

14.
Bioorg Med Chem ; 22(13): 3309-15, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24842619

ABSTRACT

Conventional chemotherapy has undesirable toxic side-effects to healthy tissues due to low cell selectivity of cytotoxic drugs. One approach to increase the specificity of a cytotoxic drug is to make a less toxic prodrug which becomes activated at the tumour site. The cysteine protease legumain have remarkable restricted substrate specificity and is the only known mammalian asparaginyl (Asn) endopeptidase. Over-expression of legumain is reported in cancers and unstable atherosclerotic plaques, and utilizing legumain is a promising approach to activate prodrugs. In this study we have synthesized the legumain-cleavable peptide sequence N-Boc-Ala-Ala-Asn-Val-OH. The peptide was subsequently conjugated to deacetyl colchicine during three steps to produce Suc-Ala-Ala-Asn-Val-colchicine (prodrug) with >90% chemical purity. Several cell lines with different expressions and activities of legumain were used to evaluate the general toxicity, specificity and efficacy of the microtubule inhibitor colchicine, valyl colchicine and the legumain-cleavable colchicine prodrug. The prodrug was more toxic to the colorectal cancer HCT116 cells (expressing both the 36kDa active and 56kDa proform of legumain) than SW620 cells (only expressing the 56kDa prolegumain) indicating a relationship between toxicity of the prodrug and activity of legumain in the cells. Also, in monoclonal legumain over-expressing HEK293 cells the prodrug toxicity was higher compared to native HEK293 cells. Furthermore, co-administration of the prodrug either with the potent legumain inhibitor cystatin E/M or the endocytosis inhibitor Dyngo-4a inhibited cell death, indicating that the prodrug toxicity was dependent on both asparaginyl endopeptidase activity and endocytosis. This colchicine prodrug adds to a legumain-activated prodrug strategy approach and could possibly be of use both in targeted anticancer and anti-inflammatory therapy.


Subject(s)
Colchicine/pharmacology , Cysteine Endopeptidases/chemistry , Prodrugs/pharmacology , Cell Proliferation/drug effects , Cell Survival/drug effects , Colchicine/chemical synthesis , Colchicine/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HCT116 Cells , HEK293 Cells , Humans , Molecular Structure , Prodrugs/chemical synthesis , Prodrugs/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
15.
Eur J Med Chem ; 74: 258-63, 2014 Mar 03.
Article in English | MEDLINE | ID: mdl-24480357

ABSTRACT

Four new mimics of 22-S-hydroxycholesterol (22SHC) were synthesized and evaluated using molecular modeling and tested in human muscle cells (primary myotubes) and hepatocytes (HepG2 cells). The new compounds (9, 12, 15a and 15b) showed good interrelationship between docking scores, to both LXRα and LXRß, and in vitro results. The LXR agonist T0901317 increased the expressions of genes involved in lipogenesis (SCD1, FAS) and cholesterol efflux (ABCA1), but only 22SHC counteracted the up-regulation of SCD1 and FAS by T0901317. Compound 9 and 12 decreased the expression of SCD1, while 9 also decreased the expression of FAS. Compounds 15a showed a significant antagonistic effect on ABCA1 expression, but neither 15a nor 15b were able to counteract the effect of T0901317 on all genes examined. Lipogenesis was increased after T0901317 treatment and only 22SHC significantly counteracted this effect. Treatment with 22SHC and compound 12 reduced lipogenesis compared to control. An increased glucose uptake was observed for all compounds, except for 15b. In summary, the new synthetic 22SHC mimics showed antagonistic effects similar to that of 22SHC, but the new substances were less potent. The sulfonamide 12 showed similar effects to 22SHC and the best effect on gene expression of the new mimics, however, it was not able to reduce the effect of T0901317 as observed for 22SHC.


Subject(s)
Lipogenesis/drug effects , Models, Biological , Orphan Nuclear Receptors/drug effects , Drug Design , Hep G2 Cells , Humans , Liver X Receptors
16.
Bioorg Med Chem ; 22(1): 643-50, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24268541

ABSTRACT

The generic, synthetic oxysterol 22(S)-hydroxycholesterol (22SHC) has shown antagonistic effects towards liver X receptor (LXR) in vitro and promising effects on plasma triacylglycerol level and body weight-gain in animal studies. On the contrary, the endogenic LXR agonist 22(R)-hydroxycholesterol (22RHC) and synthetic LXR agonists convincingly have shown agonistic effects on genes involved in lipogenesis, and inhibitory effects on cell proliferation in vitro and in vivo. We hypothesized that the carbon side chain containing the hydroxyl group at the 22-position was a pharmacophore affecting these opposite effects on LXR. This prompted us to initiate a rational drug design incorporating the 22-hydroxylated 20-27 cholesterol moiety into cholesterol-mimicking building blocks. The two enantiomers of the 22-hydroxylated 20-27 cholesterol moiety were synthesized with an excellent enantiomeric excess and the stereochemistry are supported by X-ray crystallography. Molecular modelling of the new compounds showed promising LXR selectivity (LXRß over LXRα) and initial in vitro biological evaluation in human myotubes showed that compound 16b had agonistic effects on the gene expression of SCD1 and increased lipogenesis.


Subject(s)
Hydroxycholesterols/chemical synthesis , Gene Expression , Humans , Hydroxycholesterols/chemistry , Hydroxycholesterols/metabolism , Models, Molecular , Structure-Activity Relationship
17.
Eur J Med Chem ; 69: 465-79, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24090918

ABSTRACT

Indenoindoles and their isomers cyclopentacarbazoles represent a wide class of synthetic and natural compounds. The great interest of these structures in (bio)organic chemistry is due to the use of various building blocks to get the elemental four ring structure. Depending on the synthetic route chosen, the chemists can achieve a large number of regioisomers. Each regioisomer can be considered as a template for specific functionalizations. Therefore, this mini-review aims (i) to present an overview on how to access this large family of heterocyclic compounds and (ii) to discuss their various biological applications and drug development in oncology (e.g. kinases), in CNS disorders (e.g. Alzheimer's disease), in endocrinology (e.g. hormone replacement therapy) and oxidative stress (e.g. organ preservation). Past and present works will be presented through the systems 6-5-5-6 and 6-5-6-5 (combination of 6-membered and 5-membered rings).


Subject(s)
Antineoplastic Agents/pharmacology , Carbazoles/pharmacology , Hormone Replacement Therapy , Indoles/pharmacology , Neoplasms/drug therapy , Neuroprotective Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antioxidants/chemical synthesis , Antioxidants/chemistry , Antioxidants/pharmacology , Carbazoles/chemical synthesis , Carbazoles/chemistry , Cell Proliferation/drug effects , Central Nervous System Diseases/drug therapy , Central Nervous System Diseases/enzymology , Indoles/chemical synthesis , Indoles/chemistry , Neoplasms/enzymology , Neoplasms/pathology , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Phosphotransferases/antagonists & inhibitors , Phosphotransferases/metabolism
18.
Bioorg Med Chem ; 21(17): 5175-81, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23859779

ABSTRACT

The lipophilic, cell-penetrating zinc chelator N,N,N',N',-tetrakis(2-pyridylmethyl) ethylenediamine (TPEN, 1) and the zinc chelating procaspase-activating compound PAC-1 (2) both have been reported to induce apoptosis in various cell types. The relationship between apoptosis-inducing ability and zinc affinity (Kd), have been investigated with two new model compounds, ZnA-DPA (3) and ZnA-Pyr (4), and compared to that of TPEN and PAC-1. The zinc-chelating o-hydroxybenzylidene moiety in PAC-1 was replaced with a 2,2'-dipicoylamine (DPA) unit (ZnA-DPA, 3) and a 4-pyridoxyl unit (ZnA-Pyr, 4), rendering an order of zinc affinity TPEN>ZnA-Pyr>ZnA-DPA>PAC-1. The compounds were incubated with the rat pheochromocytoma cell line PC12 and cell death was measured in combination with ZnSO4, a caspase-3 inhibitor, or a ROS scavenger. The model compounds ZnA-DPA (3) and ZnA-Pyr (4) induced cell death at higher concentrations as compared to PAC-1 and TPEN, reflecting differences in lipophilicity and thereby cell-penetrating ability. Addition of ZnSO4 reduced cell death induced by ZnA-Pyr (4) more than for ZnA-DPA (3). The ability to induce cell death could be reversed for all compounds using a caspase-3-inhibitor, and most so for TPEN (1) and ZnA-Pyr (4). Reactive oxygen species (ROS), as monitored using dihydro-rhodamine (DHR), were involved in cell death induced by all compounds. These results indicate that the Zn-chelators ZnA-DPA (3) and ZnA-Pyr (4) exercise their apoptosis-inducing effect by mechanisms similar to TPEN (1) and PAC-1 (2), by chelation of zinc, caspase-3 activation, and ROS production.


Subject(s)
Chelating Agents/chemical synthesis , Ethylenediamines/chemistry , Hydrazones/chemistry , Piperazines/chemistry , Zinc/chemistry , Amines/chemistry , Animals , Apoptosis/drug effects , Caspase 3/chemistry , Caspase 3/metabolism , Caspase Inhibitors/chemical synthesis , Caspase Inhibitors/chemistry , Caspase Inhibitors/toxicity , Chelating Agents/chemistry , Chelating Agents/toxicity , Ethylenediamines/toxicity , Hydrazones/toxicity , PC12 Cells , Picolinic Acids/chemistry , Piperazines/toxicity , Pyridoxine/chemistry , Rats , Reactive Oxygen Species/metabolism , Zinc Sulfate/chemistry , Zinc Sulfate/toxicity
19.
Acta Crystallogr C ; 69(Pt 6): 647-50, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23744388

ABSTRACT

(2S,3S)-2,6-dimethylheptane-1,3-diol, C9H20O2, (I), was synthesized from the ketone (R)-4-benzyl-3-[(2R,3S)-3-hydroxy-2,6-dimethylheptanoyl]-1,3-oxazolidin-2-one, C19H27NO4, (II), containing C atoms of known chirality. In both structures, strong hydrogen bonds between the hydroxy groups form tape motifs. The contribution from weaker C-H···O hydrogen bonds is much more evident in the structure of (II), which furthermore contains an example of a direct short Osp(3)···Csp(2) contact that represents a usually unrecognized type of intermolecular interaction.


Subject(s)
Glycols/chemistry , Hydroxycholesterols/chemistry , Chemistry Techniques, Synthetic , Crystallography, X-Ray , Glycols/chemical synthesis , Hydrogen Bonding , Molecular Conformation , Molecular Structure , Oxazolidinones/chemistry , Stereoisomerism
20.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 2): m112-3, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23424407

ABSTRACT

In the title salt, [Zn(C(22)H(24)N(4)O)(CH(3)CN)][Zn(ClO(4))(C(22)H(24)N(4)O)(CH(3)CN)](ClO(4))(3), two differently coordinated zinc cations occur. In the first complex, the metal ion is coordinated by the N,N',N'',O-tetra-dentate acetamide ligand and an acetonitrile N atom, generating an approximate trigonal-bipyramidal coordination geometry, with the O atom in an equatorial site and the acetonitrile N atom in an axial site. In the second complex ion, a perchlorate ion is also bonded to the zinc ion, generating a distorted trans-ZnO(2)N(4) octa-hedron. Of the uncoordinating perchlorate ions, one lies on a crystallographic twofold axis and one lies close to a twofold axis and has a site occupancy of 0.5. N-H⋯O and N-H⋯(O,O) hydrogen bonds are observed in the crystal. Disordered solvent mol-ecules occupy about 11% of the unit-cell volume; their contribution to the scattering was removed with the SQUEEZE routine of the PLATON program [Spek (2009 ▶). Acta Cryst. D65, 148-155.].

SELECTION OF CITATIONS
SEARCH DETAIL
...