Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 8239, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38086824

ABSTRACT

Electrons at the border of localization generate exotic states of matter across all classes of strongly correlated electron materials and many other quantum materials with emergent functionality. Heavy electron metals are a model example, in which magnetic interactions arise from the opposing limits of localized and itinerant electrons. This remarkable duality is intimately related to the emergence of a plethora of novel quantum matter states such as unconventional superconductivity, electronic-nematic states, hidden order and most recently topological states of matter such as topological Kondo insulators and Kondo semimetals and putative chiral superconductors. The outstanding challenge is that the archetypal Kondo lattice model that captures the underlying electronic dichotomy is notoriously difficult to solve for real materials. Here we show, using the prototypical strongly-correlated antiferromagnet CeIn3, that a multi-orbital periodic Anderson model embedded with input from ab initio bandstructure calculations can be reduced to a simple Kondo-Heisenberg model, which captures the magnetic interactions quantitatively. We validate this tractable Hamiltonian via high-resolution neutron spectroscopy that reproduces accurately the magnetic soft modes in CeIn3, which are believed to mediate unconventional superconductivity. Our study paves the way for a quantitative understanding of metallic quantum states such as unconventional superconductivity.

2.
Nat Commun ; 13(1): 6129, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36253344

ABSTRACT

Effective models focused on pertinent low-energy degrees of freedom have substantially contributed to our qualitative understanding of quantum materials. An iconic example, the Kondo model, was key to demonstrating that the rich phase diagrams of correlated metals originate from the interplay of localized and itinerant electrons. Modern electronic structure calculations suggest that to achieve quantitative material-specific models, accurate consideration of the crystal field and spin-orbit interactions is imperative. This poses the question of how local high-energy degrees of freedom become incorporated into a collective electronic state. Here, we use resonant inelastic x-ray scattering (RIXS) on CePd3 to clarify the fate of all relevant energy scales. We find that even spin-orbit excited states acquire pronounced momentum-dependence at low temperature-the telltale sign of hybridization with the underlying metallic state. Our results demonstrate how localized electronic degrees of freedom endow correlated metals with new properties, which is critical for a microscopic understanding of superconducting, electronic nematic, and topological states.

3.
Sci Adv ; 7(13)2021 Mar.
Article in English | MEDLINE | ID: mdl-33771869

ABSTRACT

The transverse voltage generated by a temperature gradient in a perpendicularly applied magnetic field, termed the Nernst effect, has promise for thermoelectric applications and for probing electronic structure. In magnetic materials, an anomalous Nernst effect (ANE) is possible in a zero magnetic field. We report a colossal ANE in the ferromagnetic metal UCo0.8Ru0.2Al, reaching 23 microvolts per kelvin. Uranium's 5f electrons provide strong electronic correlations that lead to narrow bands, a known route to producing a large thermoelectric response. In addition, uranium's strong spin-orbit coupling produces an intrinsic transverse response in this material due to the Berry curvature associated with the relativistic electronic structure. Theoretical calculations show that in UCo0.8Ru0.2Al at least 148 Weyl nodes, and two nodal lines, exist within 60 millielectron volt of the Fermi level. This work demonstrates that magnetic actinide materials can host strong Nernst and Hall responses due to their combined correlated and topological nature.

4.
Sci Adv ; 6(42)2020 Oct.
Article in English | MEDLINE | ID: mdl-33055167

ABSTRACT

UTe2 is a recently discovered unconventional superconductor that has attracted much interest because of its potentially spin-triplet topological superconductivity. Our ac calorimetry, electrical resistivity, and x-ray absorption study of UTe2 under applied pressure reveals key insights on the superconducting and magnetic states surrounding pressure-induced quantum criticality at P c1 = 1.3 GPa. First, our specific heat data at low pressures, combined with a phenomenological model, show that pressure alters the balance between two closely competing superconducting orders. Second, near 1.5 GPa, we detect two bulk transitions that trigger changes in the resistivity, which are consistent with antiferromagnetic order, rather than ferromagnetism. Third, the emergence of magnetism is accompanied by an increase in valence toward a U4+ (5f 2) state, which indicates that UTe2 exhibits intermediate valence at ambient pressure. Our results suggest that antiferromagnetic fluctuations may play a more substantial role on the superconducting state of UTe2 than previously thought.

5.
Nat Commun ; 10(1): 5487, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31792205

ABSTRACT

Kondo insulators are expected to transform into metals under a sufficiently strong magnetic field. The closure of the insulating gap stems from the coupling of a magnetic field to the electron spin, yet the required strength of the magnetic field-typically of order 100 T-means that very little is known about this insulator-metal transition. Here we show that Ce[Formula: see text]Bi[Formula: see text]Pd[Formula: see text], owing to its fortuitously small gap, provides an ideal Kondo insulator for this investigation. A metallic Fermi liquid state is established above a critical magnetic field of only [Formula: see text] 11 T. A peak in the strength of electronic correlations near [Formula: see text], which is evident in transport and susceptibility measurements, suggests that Ce[Formula: see text]Bi[Formula: see text]Pd[Formula: see text] may exhibit quantum criticality analogous to that reported in Kondo insulators under pressure. Metamagnetism and the breakdown of the Kondo coupling are also discussed.

6.
Phys Rev Lett ; 122(16): 166401, 2019 Apr 26.
Article in English | MEDLINE | ID: mdl-31075018

ABSTRACT

SmB_{6} is a candidate topological Kondo insulator that displays surface conduction at low temperatures. Here, we perform torque magnetization measurements as a means to detect de Haas-van Alphen (dHvA) oscillations in SmB_{6} crystals grown by aluminum flux. We find that dHvA oscillations occur in single crystals containing embedded aluminum, originating from the flux used to synthesize SmB_{6}. Measurements on a sample with multiple, unconnected aluminum inclusions show that aluminum crystallizes in a preferred orientation within the SmB_{6} cubic lattice. The presence of aluminum is confirmed through bulk susceptibility measurements, but does not show a signature in transport measurements. We discuss the ramifications of our results.

7.
Phys Rev Lett ; 122(1): 016402, 2019 Jan 11.
Article in English | MEDLINE | ID: mdl-31012717

ABSTRACT

High magnetic fields induce a pronounced in-plane electronic anisotropy in the tetragonal antiferromagnetic metal CeRhIn_{5} at H^{*}≳30 T for fields ≃20° off the c axis. Here we investigate the response of the underlying crystal lattice in magnetic fields to 45 T via high-resolution dilatometry. At low fields, a finite magnetic field component in the tetragonal ab plane explicitly breaks the tetragonal (C_{4}) symmetry of the lattice revealing a finite nematic susceptibility. A modest a-axis expansion at H^{*} hence marks the crossover to a fluctuating nematic phase with large nematic susceptibility. Magnetostriction quantum oscillations confirm a Fermi surface change at H^{*} with the emergence of new orbits. By analyzing the field-induced change in the crystal-field ground state, we conclude that the in-plane Ce 4f hybridization is enhanced at H^{*}, in agreement with the in-plane lattice expansion. We argue that the nematic behavior observed in this prototypical heavy-fermion material is of electronic origin, and is driven by the hybridization between 4f and conduction electrons which carries the f-electron anisotropy to the Fermi surface.

8.
Phys Rev Lett ; 121(3): 037003, 2018 Jul 20.
Article in English | MEDLINE | ID: mdl-30085774

ABSTRACT

CeCo(In_{0.990}Hg_{0.010})_{5} is a charge doped variant of the d-wave CoCoIn_{5} superconductor with coexistent antiferromagnetic and superconducting transitions occurring at T_{N}=3.4 and T_{c}=1.4 K, respectively. We use neutron diffraction and spectroscopy to show that the magnetic resonant fluctuations present in the parent superconducting phase are replaced by collinear c-axis magnetic order with three-dimensional Ising critical fluctuations. No low-energy transverse spin fluctuations are observable in this doping-induced antiferromagnetic phase and the dynamic resonant spectral weight predominately shifts to the elastic channel. Static (τ>0.2 ns) collinear Ising order is proximate to superconductivity in CeCoIn_{5} and is stabilized through hole doping with Hg.

9.
Nat Commun ; 9(1): 2217, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29880848

ABSTRACT

Weyl fermions are a recently discovered ingredient for correlated states of electronic matter. A key difficulty has been that real materials also contain non-Weyl quasiparticles, and disentangling the experimental signatures has proven challenging. Here we use magnetic fields up to 95 T to drive the Weyl semimetal TaAs far into its quantum limit, where only the purely chiral 0th Landau levels of the Weyl fermions are occupied. We find the electrical resistivity to be nearly independent of magnetic field up to 50 T: unusual for conventional metals but consistent with the chiral anomaly for Weyl fermions. Above 50 T we observe a two-order-of-magnitude increase in resistivity, indicating that a gap opens in the chiral Landau levels. Above 80 T we observe strong ultrasonic attenuation below 2 K, suggesting a mesoscopically textured state of matter. These results point the way to inducing new correlated states of matter in the quantum limit of Weyl semimetals.

10.
Phys Rev Lett ; 120(18): 187002, 2018 May 04.
Article in English | MEDLINE | ID: mdl-29775349

ABSTRACT

Unconventional superconductivity and magnetism are intertwined on a microscopic level in a wide class of materials. A new approach to this most fundamental and hotly debated issue focuses on the role of interactions between superconducting electrons and bosonic fluctuations at the interface between adjacent layers in heterostructures. Here we fabricate hybrid superlattices consisting of alternating atomic layers of the heavy-fermion superconductor CeCoIn_{5} and antiferromagnetic (AFM) metal CeRhIn_{5}, in which the AFM order can be suppressed by applying pressure. We find that the superconducting and AFM states coexist in spatially separated layers, but their mutual coupling via the interface significantly modifies the superconducting properties. An analysis of upper critical fields reveals that, upon suppressing the AFM order by applied pressure, the force binding superconducting electron pairs acquires an extreme strong-coupling nature. This demonstrates that superconducting pairing can be tuned nontrivially by magnetic fluctuations (paramagnons) injected through the interface.

11.
Nature ; 548(7667): 313-317, 2017 08 17.
Article in English | MEDLINE | ID: mdl-28783723

ABSTRACT

Electronic nematic materials are characterized by a lowered symmetry of the electronic system compared to the underlying lattice, in analogy to the directional alignment without translational order in nematic liquid crystals. Such nematic phases appear in the copper- and iron-based high-temperature superconductors, and their role in establishing superconductivity remains an open question. Nematicity may take an active part, cooperating or competing with superconductivity, or may appear accidentally in such systems. Here we present experimental evidence for a phase of fluctuating nematic character in a heavy-fermion superconductor, CeRhIn5 (ref. 5). We observe a magnetic-field-induced state in the vicinity of a field-tuned antiferromagnetic quantum critical point at Hc ≈ 50 tesla. This phase appears above an out-of-plane critical field H* ≈ 28 tesla and is characterized by a substantial in-plane resistivity anisotropy in the presence of a small in-plane field component. The in-plane symmetry breaking has little apparent connection to the underlying lattice, as evidenced by the small magnitude of the magnetostriction anomaly at H*. Furthermore, no anomalies appear in the magnetic torque, suggesting the absence of metamagnetism in this field range. The appearance of nematic behaviour in a prototypical heavy-fermion superconductor highlights the interrelation of nematicity and unconventional superconductivity, suggesting nematicity to be common among correlated materials.

12.
Proc Natl Acad Sci U S A ; 114(21): 5384-5388, 2017 05 23.
Article in English | MEDLINE | ID: mdl-28487488

ABSTRACT

Applied pressure drives the heavy-fermion antiferromagnet CeRhIn5 toward a quantum critical point that becomes hidden by a dome of unconventional superconductivity. Magnetic fields suppress this superconducting dome, unveiling the quantum phase transition of local character. Here, we show that [Formula: see text] magnetic substitution at the Ce site in CeRhIn5, either by Nd or Gd, induces a zero-field magnetic instability inside the superconducting state. This magnetic state not only should have a different ordering vector than the high-field local-moment magnetic state, but it also competes with the latter, suggesting that a spin-density-wave phase is stabilized in zero field by Nd and Gd impurities, similarly to the case of Ce0.95Nd0.05CoIn5 Supported by model calculations, we attribute this spin-density wave instability to a magnetic-impurity-driven condensation of the spin excitons that form inside the unconventional superconducting state.

13.
Sci Rep ; 7: 46296, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28393931

ABSTRACT

In search of novel, improved materials for magnetic data storage and spintronic devices, compounds that allow a tailoring of magnetic domain shapes and sizes are essential. Good candidates are materials with intrinsic anisotropies or competing interactions, as they are prone to host various domain phases that can be easily and precisely selected by external tuning parameters such as temperature and magnetic field. Here, we utilize vector magnetic fields to visualize directly the magnetic anisotropy in the uniaxial ferromagnet CeRu2Ga2B. We demonstrate a feasible control both globally and locally of domain shapes and sizes by the external field as well as a smooth transition from single stripe to bubble domains, which opens the door to future applications based on magnetic domain tailoring.

14.
J Phys Condens Matter ; 29(17): 17LT01, 2017 May 04.
Article in English | MEDLINE | ID: mdl-28349895

ABSTRACT

Two aspects of the ambient pressure magnetic structure of heavy fermion material CeRhIn5 have remained under some debate since its discovery: whether the structure is indeed an incommensurate helix or a spin density wave, and what is the precise magnitude of the ordered magnetic moment. By using a single crystal sample optimized for hot neutrons to minimize neutron absorption by Rh and In, here we report an ordered moment of [Formula: see text]. In addition, by using spherical neutron polarimetry measurements on a similar single crystal sample, we have confirmed the helical nature of the magnetic structure, and identified a single chiral domain.

15.
Sci Rep ; 6: 27294, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27271852

ABSTRACT

The change in resistance of a material in a magnetic field reflects its electronic state. In metals with weakly- or non-interacting electrons, the resistance typically increases upon the application of a magnetic field. In contrast, negative magnetoresistance may appear under some circumstances, e.g., in metals with anisotropic Fermi surfaces or with spin-disorder scattering and semimetals with Dirac or Weyl electronic structures. Here we show that the non-magnetic semimetal TaAs2 possesses a very large negative magnetoresistance, with an unknown scattering mechanism. Density functional calculations find that TaAs2 is a new topological semimetal [ℤ2 invariant (0;111)] without Dirac dispersion, demonstrating that a negative magnetoresistance in non-magnetic semimetals cannot be attributed uniquely to the Adler-Bell-Jackiw chiral anomaly of bulk Dirac/Weyl fermions.

16.
J Phys Condens Matter ; 28(5): 055502, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26764313

ABSTRACT

We report the effect of hydrostatic pressure on the magnetotransport properties of the Weyl semimetal NbAs. Subtle changes can be seen in the ρ(xx)(T) profiles with pressure up to 2.31 GPa. The Fermi surfaces undergo an anisotropic evolution under pressure: the extremal areas slightly increase in the k(x)-k(y) plane, but decrease in the k(z)-k(y)(k(x)) plane. The topological features of the two pockets observed at atmospheric pressure, however, remain unchanged at 2.31 GPa. No superconductivity can be seen down to 0.3 K for all the pressures measured. By fitting the temperature dependence of specific heat to the Debye model, we obtain a small Sommerfeld coefficient γ(0) = 0.09(1) mJ (mol·K(2))(-1) and a large Debye temperature, Θ(D) = 450(9) K, confirming a 'hard' crystalline lattice that is stable under pressure. We also studied the Kadowaki-Woods ratio of this low-carrier-density massless system, R(KW) = 3.2 × 10(4) µΩ cm mol(2) K(2) J(-2). After accounting for the small carrier density in NbAs, this R(KW) indicates a suppressed transport scattering rate relative to other metals.

17.
Proc Natl Acad Sci U S A ; 112(44): 13520-4, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26483465

ABSTRACT

The easily tuned balance among competing interactions in Kondo-lattice metals allows access to a zero-temperature, continuous transition between magnetically ordered and disordered phases, a quantum-critical point (QCP). Indeed, these highly correlated electron materials are prototypes for discovering and exploring quantum-critical states. Theoretical models proposed to account for the strange thermodynamic and electrical transport properties that emerge around the QCP of a Kondo lattice assume the presence of an indefinitely large number of itinerant charge carriers. Here, we report a systematic transport and thermodynamic investigation of the Kondo-lattice system CeNi2-δAs2 (δ ≈ 0.28) as its antiferromagnetic order is tuned by pressure and magnetic field to zero-temperature boundaries. These experiments show that the very small but finite carrier density of ~0.032 E-/formular unit in CeNi2-δAs2 leads to unexpected transport signatures of quantum criticality and the delayed development of a fully coherent Kondo-lattice state with decreasing temperature. The small carrier density and associated semimetallicity of this Kondo-lattice material favor an unconventional, local-moment type of quantum criticality and raises the specter of the Nozières exhaustion idea that an insufficient number of conduction-electron spins to separately screen local moments requires collective Kondo screening.

18.
J Phys Condens Matter ; 27(36): 365702, 2015 Sep 16.
Article in English | MEDLINE | ID: mdl-26302330

ABSTRACT

We report thermal and transport properties of U2Pt x Ir1-x C2 from which a magnetic phase diagram is obtained. Pure U2IrC2 is an antiferromagnet at 6.5 K, whose Néel temperature initially rises to 13.2 K at x = 0.2 and subsequently is suppressed to zero temperature with increasing Pt content near x = 0.6. Heat capacity divided by temperature at x = 0.6 shows an upturn at low temperature, consistent with the expectations of enhanced quantum fluctuations in the presence of an underlying quantum critical point. The entropy after the phonon contribution has been subtracted has a value of 0.24 Rln2 at the Néel temperature of U2IrC2, revealing an itinerant nature of the 5 f electrons in this compound. On the Pt rich side of the phase diagram, superconductivity is suppressed by x = 0.85. The residual resistivity increases by a factor of 10 from pure Pt (x = 1) to x = 0.85 where superconductivity is suppressed to zero. By comparing the phase diagram of Ir doped U2PtC2 with the phase diagram of pressure tuned and Rh doped U2PtC2 we demonstrate the role of electronic tuning in this system.

19.
Phys Rev Lett ; 114(14): 146403, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-25910144

ABSTRACT

We investigated the electrical resistivity and heat capacity of 1% Cd-doped CeIrIn_{5} under hydrostatic pressure up to 2.7 GPa, near where long-range antiferromagnetic order is suppressed and bulk superconductivity suddenly reemerges. The pressure-induced T_{c} is close to that of pristine CeIrIn_{5} at 2.7 GPa, and no signatures of a quantum critical point under pressure support a local origin of the antiferromagnetic moments in Cd-CeIrIn_{5} at ambient pressure. Similarities between superconductors CeIrIn_{5} and CeCoIn_{5} in response to Cd substitutions suggest a common magnetic mechanism.

20.
Phys Rev Lett ; 114(12): 127001, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25860768

ABSTRACT

Nuclear magnetic resonance (NMR) measurements on the ^{195}Pt nucleus in an aligned powder of the moderately heavy-fermion material U_{2}PtC_{2} are consistent with spin-triplet pairing in its superconducting state. Across the superconducting transition temperature and to much lower temperatures, the NMR Knight shift is temperature independent for field both parallel and perpendicular to the tetragonal c axis, expected for triplet equal-spin pairing superconductivity. The NMR spin-lattice relaxation rate 1/T_{1}, in the normal state, exhibits characteristics of ferromagnetic fluctuations, compatible with an enhanced Wilson ratio. In the superconducting state, 1/T_{1} follows a power law with temperature without a coherence peak giving additional support that U_{2}PtC_{2} is an unconventional superconductor. Bulk measurements of the ac susceptibility and resistivity indicate that the upper critical field exceeds the Pauli limiting field for spin-singlet pairing and is near the orbital limiting field, an additional indication for spin-triplet pairing.

SELECTION OF CITATIONS
SEARCH DETAIL
...