Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
mBio ; 7(2): e00491-16, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-27094332

ABSTRACT

UNLABELLED: A clinical laboratory evaluation of an intrinsic fluorescence spectroscopy (IFS)-based identification system paired to a BacT/Alert Virtuo microbial detection system (bioMérieux, Inc., Durham, NC) was performed to assess the potential for fully automated identification of positive blood cultures. The prototype IFS system incorporates a novel method combining a simple microbial purification procedure with rapid in situ identification via spectroscopy. Results were available within 15 min of a bottle signaling positive and required no manual intervention. Among cultures positive for organisms contained within the database and producing acceptable spectra, 75 of 88 (85.2%) and 79 of 88 (89.8%) were correctly identified to the species and genus level, respectively. These results are similar to the performance of existing rapid methods. IMPORTANCE: A fully automated research platform was developed to identify microbial growth from positive blood cultures in <15 min. Because of the automated format, results can be generated during all shifts, with or without staffing, which in turn could promote more timely administration of target antimicrobial therapy.


Subject(s)
Automation/methods , Bacteremia/microbiology , Bacteria/isolation & purification , Blood Culture/methods , Spectrometry, Fluorescence/methods , Automation/instrumentation , Bacteremia/diagnosis , Bacteria/classification , Bacteria/growth & development , Blood Culture/instrumentation , Humans
3.
mBio ; 4(6): e00865-13, 2013 Nov 19.
Article in English | MEDLINE | ID: mdl-24255123

ABSTRACT

UNLABELLED: A positive blood culture is a critical result that requires prompt identification of the causative agent. This article describes a simple method to identify microorganisms from positive blood culture broth within the time taken to perform a Gram stain (<20 min). The method is based on intrinsic fluorescence spectroscopy (IFS) of whole cells and required development of a selective lysis buffer, aqueous density cushion, optical microcentrifuge tube, and reference database. A total of 1,121 monomicrobial-positive broth samples from 751 strains were analyzed to build a database representing 37 of the most commonly encountered species in bloodstream infections or present as contaminants. A multistage algorithm correctly classified 99.6% of unknown samples to the Gram level, 99.3% to the family level, and 96.5% to the species level. There were no incorrect results given at the Gram or family classification levels, while 0.8% of results were discordant at the species level. In 8/9 incorrect species results, the misidentified isolate was assigned to a species of the same genus. This unique combination of selective lysis, density centrifugation, and IFS can rapidly identify the most common microbial species present in positive blood cultures. Faster identification of the etiologic agent may benefit the clinical management of sepsis. Further evaluation is now warranted to determine the performance of the method using clinical blood culture specimens. IMPORTANCE: Physicians often require the identity of the infective agent in order to make life-saving adjustments to empirical therapy or to switch to less expensive and/or more targeted antimicrobials. However, standard identification procedures take up to 2 days after a blood culture is signaled positive, and even most rapid molecular techniques take several hours to provide a result. Other techniques are faster (e.g., matrix-assisted laser desorption ionization-time of flight [MALDI-TOF] mass spectrometry) but require time-consuming manual processing steps and expensive equipment. There remains a clear need for a simple, inexpensive method to rapidly identify microorganisms directly from positive blood cultures. The promising new method described in this research article can identify microorganisms in minutes by optical spectroscopy, thus permitting the lab to simultaneously report the presence of a positive blood culture and the organism's identity.


Subject(s)
Bacteremia/diagnosis , Bacteria/isolation & purification , Blood/microbiology , Fungemia/diagnosis , Fungi/isolation & purification , Microbiological Techniques/methods , Spectrometry, Fluorescence/methods , Bacteremia/microbiology , Bacteria/chemistry , Bacteria/classification , Fungemia/microbiology , Fungi/chemistry , Fungi/classification , Humans , Sensitivity and Specificity , Specimen Handling/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...