Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pulm Pharmacol Ther ; 85: 102299, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663512

ABSTRACT

INTRODUCTION: Use of propellants with high global warming potential (such as HFA-134a) for pressurised metered-dose inhalers (pMDIs) is being phased down. Switching to dry-powder inhalers may not be clinically feasible for all patients; an alternative is reformulation using propellants with low global warming potential. The combination of beclometasone dipropionate/formoterol fumarate/glycopyrronium bromide (BDP/FF/GB) is available for asthma or chronic obstructive pulmonary disease via pMDI using HFA-134a as propellant. This is being reformulated using the low global warming potential propellant HFA-152a. This manuscript reports three studies comparing BDP/FF/GB pharmacokinetics delivered via pMDI using HFA-152a vs HFA-134a. METHODS: The studies were four-way crossover, single-dose, randomised, double-blind, in healthy volunteers. In Studies 1 and 2, subjects inhaled four puffs of BDP/FF/GB (Study 1: 100/6/12.5 µg [medium-strength BDP]; Study 2: 200/6/12.5 µg [high-strength]), ingesting activated charcoal in two of the periods (once per propellant). In Study 3, subjects inhaled medium- and high-strength BDP/FF/GB using a spacer. All three studies compared HFA-152a vs HFA-134a in terms of lung availability and total systemic exposure of beclometasone-17-monopropionate (B17MP; active metabolite of BDP), BDP, formoterol and GB. Bioequivalence was concluded if the 90 % confidence intervals (CIs) of the ratios between formulations of the geometric mean maximum plasma concentration (Cmax) and area under the plasma concentration-time curve between time zero and the last quantifiable timepoint (AUC0-t) for the analytes were between 80 and 125 %. RESULTS: In Studies 1 and 2, systemic exposure bioequivalence (i.e., comparisons without charcoal block) was demonstrated, except for GB Cmax in Study 2 (upper 90 % CI 125.11 %). For lung availability (i.e., comparisons with charcoal block), B17MP and formoterol demonstrated bioequivalence in both studies, as did BDP in Study 2; in Study 1, BDP upper CIs were 126.96 % for Cmax and 127.34 % for AUC0-t). In Study 1, GB AUC0-t lower CI was 74.54 %; in Study 2 upper limits were 135.64 % for Cmax and 129.12 % for AUC0-t. In Study 3, the bioequivalence criteria were met for BDP, B17MP and formoterol with both BDP/FF/GB strengths, and were met for GB AUC0-t, although not for Cmax. Both formulations were similarly well tolerated in all three studies. CONCLUSIONS: Overall, while formal bioequivalence cannot be concluded for all analytes, these data suggest therapeutic equivalence of the new formulation with the existing BDP/FF/GB pMDI formulation, therefore supporting reformulation using a propellant with low global warming potential.


Subject(s)
Aerosol Propellants , Beclomethasone , Cross-Over Studies , Drug Combinations , Formoterol Fumarate , Glycopyrrolate , Metered Dose Inhalers , Beclomethasone/pharmacokinetics , Beclomethasone/administration & dosage , Humans , Formoterol Fumarate/pharmacokinetics , Formoterol Fumarate/administration & dosage , Male , Glycopyrrolate/pharmacokinetics , Glycopyrrolate/administration & dosage , Administration, Inhalation , Adult , Double-Blind Method , Female , Middle Aged , Young Adult , Area Under Curve , Therapeutic Equivalency , Bronchodilator Agents/pharmacokinetics , Bronchodilator Agents/administration & dosage , Anti-Asthmatic Agents/pharmacokinetics , Anti-Asthmatic Agents/administration & dosage , Fluorocarbons
2.
J Aerosol Med Pulm Drug Deliv ; 35(4): 179-185, 2022 08.
Article in English | MEDLINE | ID: mdl-35128939

ABSTRACT

Background: An extrafine formulation triple therapy combination of beclomethasone dipropionate (BDP), formoterol fumarate (FF), and glycopyrronium bromide (GB) has been developed for the maintenance treatment of asthma and chronic obstructive pulmonary disease. This study used gamma scintigraphy to evaluate the intrapulmonary and extrapulmonary in vivo deposition of BDP/FF/GB, and the intrapulmonary regional distribution of the deposited formulation. Methods: This open-label uncontrolled nonrandomized single-dose study recruited 10 healthy volunteers and 9 patients with asthma. After a krypton-81m (81mKr) ventilation scan was conducted, subjects inhaled study drug (four inhalations of BDP/FF/GB 100/6/12.5 µg radiolabeled using technetium-99 m [99mTc]) through pressurized metered-dose inhaler, and a series of scintigraphic images were taken. The primary objective was to evaluate intrapulmonary drug deposition of BDP/FF/GB, determined as the percentage of nominal (i.e., metered) dose. Secondary endpoints included central/peripheral deposition ratio (C/P), and the standardized central/peripheral ratio (sC/P; 99mTc aerosol C/P/81mKr gas C/P). Results: All participants completed the study, with all scintigraphy procedures performed at one site. In patients with asthma, mean ± standard deviation intrapulmonary deposition was 25.50% ± 6.81%, not significantly different to that in healthy volunteers (22.74% ± 9.19%; p = 0.4715). Approximately half of the lung dose was deposited in the peripheral region of the lung (fraction deposited 0.52 ± 0.07 and 0.49 ± 0.06 in healthy volunteers and patients with asthma, respectively), resulting in C/P ratios of 0.94 ± 0.25 and 1.06 ± 0.25, respectively, with sC/P ratios of 1.80 ± 0.40 and 1.94 ± 0.38. Deposition patterns were similar in the two populations. BDP/FF/GB was well tolerated. Conclusions: This study confirmed that the extrafine particles delivered by BDP/FF/GB penetrate the peripheral areas of the lungs, with a similar proportion of particles deposited in the central and peripheral regions. Importantly, the deposition patterns were similar in healthy volunteers and patients with asthma, suggesting that disease characteristics are unlikely to impact drug deposition. Clinical Trial Registration number: NCT03795350.


Subject(s)
Asthma , Beclomethasone , Administration, Inhalation , Asthma/diagnostic imaging , Asthma/drug therapy , Beclomethasone/adverse effects , Drug Combinations , Formoterol Fumarate , Glycopyrrolate/adverse effects , Healthy Volunteers , Humans , Lung/diagnostic imaging , Treatment Outcome
3.
Pharm Res ; 33(9): 2229-38, 2016 09.
Article in English | MEDLINE | ID: mdl-27271272

ABSTRACT

PURPOSE: To evaluate the kinetics of topically applied clobetasol-17-propionate (CP-17) in lesional and non-lesional psoriatic skin when released from a commercially available low-strength cream using in vivo dermal open-flow microperfusion (dOFM). METHODS: Twelve patients received Dermovate® cream (CP-17, 0.05%) on small lesional and non-lesional skin test sites for 14 days, once daily. On day 1 and 14, dOFM samples were continuously taken in the dermis for 24 h post-dose and analyzed by LC-MS/MS. Probe depths were assessed by 50 MHz ultrasound scanning. RESULTS: Mixed-effects modelling identified skin condition, treatment duration and probe-depth as kinetics determining variables. The time- and depth-resolved intradermal data revealed (i) slower penetration of CP-17 into lesional than into non-lesional skin, (ii) normalized (faster) skin penetration after repeated dosing, and (iii) no CP-17 accumulation within the dermis independently of the skin condition. CONCLUSIONS: Intradermal investigation of a highly lipophilic drug released from low-strength cream was successfully performed by using dOFM and timely and spatially, i.e., probe-depth dependent, resolved kinetic data were delivered. These data support the assumption that the thickened psoriatic stratum corneum might act as trap compartment which lowers the skin penetration rate for lipophilic topical drugs.


Subject(s)
Clobetasol/administration & dosage , Clobetasol/pharmacokinetics , Skin/drug effects , Skin/metabolism , Administration, Cutaneous , Adult , Chromatography, Liquid/methods , Female , Humans , Kinetics , Male , Perfusion/methods , Skin Absorption/physiology , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...