Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 28(10): 12714-12724, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33094459

ABSTRACT

We studied the impact of fly ash produced by the thermal power station in the Middle Urals (Russia) on functional traits of two Betula species naturally colonizing ash dump lagoons. The main limiting factors for tree growth on fly ash deposits were nitrogen deficiency, high alkalinity, and unfavorable mechanical composition of substrate. Leaf area ratio (LAR) and leaf mass ratio (LMR) per tree, leaf area (LA), leaf shape coefficient (LSh), leaf thickness (LT), leaf mass per area (LMA), photosynthesis (Amax) and transpiration rates, chlorophyll (Chl), carotenoid (Car), and nitrogen (N) content were measured in Betula pendula Roth and Betula pubescens Ehrh. growing on the ash dump and in the forest near the dump. Both Betula species showed similar functional response to adverse conditions of the fly ash. We found a 1.5-2-fold increase in LAR and LMR in trees growing on fly ash deposits compared with trees in the forest. In both species, the most significant differences across leaf morphological traits were shown for LT. Higher LT provided an increase in Chl and N content per leaf area that caused the rise in Amax and photosynthetic water use efficiency in the trees on the ash deposit. At the same time, Betula species preserved interspecific differences in values of LA and LT which were larger in B. pubescens whiles B. pendula differed by higher LSh. We concluded that the increase in assimilation activity at both whole-plant and leaf levels provides plant adjustment to edaphic and nutrient stress that allow Betula species to colonize technogenic substrates as fly ash deposits.


Subject(s)
Betula , Coal Ash , Nutrients , Photosynthesis , Plant Leaves , Russia , Trees
2.
New Phytol ; 217(2): 558-570, 2018 01.
Article in English | MEDLINE | ID: mdl-29053190

ABSTRACT

We studied the impact of aridity on leaf and mesophyll traits in dominant and very abundant plant species of Eurasian steppe plant communities. We covered a 500-km latitudinal gradient across three vegetation zones in the Volga region of southern European Russia. Whole-leaf traits, volumetric fractions of leaf tissues, quantitative parameters of photosynthetic cells and chloroplasts, and chlorophyll, carbon (C) and nitrogen (N) contents were analyzed and related to plant functional type (PFT), type of mesophyll anatomy, phylogeny and climate aridity. The proportions of prevailing PFTs in the communities, such as C3 monocots, C3 dicots with dorsiventral and isopalisade anatomy and C4 dicots, changed with increasing aridity which influenced the whole-leaf parameters and tissue composition in the leaf. Leaf mass per unit area and leaf thickness slightly increased along the aridity gradient, but the most significant changes were observed in the mesophyll. Mesophyll cell surface area, chloroplast number and chloroplast surface area per unit leaf area were higher in C3 plants growing in the desert steppe compared with those of the forest steppe, while chlorophyll content per single chloroplast and per unit N content as well chlorophyll a/b ratio decreased. Our results identify a suite of mesophyll traits as a typical 'syndrome' of increasingly drought-adapted steppe plants.


Subject(s)
Carbon/metabolism , Droughts , Grassland , Mesophyll Cells/metabolism , Quantitative Trait, Heritable , Climate , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...