Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 135(34): 12615-26, 2013 Aug 28.
Article in English | MEDLINE | ID: mdl-23805867

ABSTRACT

Water cluster formation and methane adsorption within a hydrophobic porous metal organic framework is studied by in situ vibrational spectroscopy, adsorption isotherms, and first-principle DFT calculations (using vdW-DF). Specifically, the formation and stability of H2O clusters in the hydrophobic cavities of a fluorinated metal-organic framework (FMOF-1) is examined. Although the isotherms of water show no measurable uptake (see Yang et al. J. Am. Chem. Soc. 2011 , 133 , 18094 ), the large dipole of the water internal modes makes it possible to detect low water concentrations using IR spectroscopy in pores in the vicinity of the surface of the solid framework. The results indicate that, even in the low pressure regime (100 mTorr to 3 Torr), water molecules preferentially occupy the large cavities, in which hydrogen bonding and wall hydrophobicity foster water cluster formation. We identify the formation of pentameric water clusters at pressures lower than 3 Torr and larger clusters beyond that pressure. The binding energy of the water species to the walls is negligible, as suggested by DFT computational findings and corroborated by IR absorption data. Consequently, intermolecular hydrogen bonding dominates, enhancing water cluster stability as the size of the cluster increases. The formation of water clusters with negligible perturbation from the host may allow a quantitative comparison with experimental environmental studies on larger clusters that are in low concentrations in the atmosphere. The stability of the water clusters was studied as a function of pressure reduction and in the presence of methane gas. Methane adsorption isotherms for activated FMOF-1 attained volumetric adsorption capacities ranging from 67 V(STP)/V at 288 K and 31 bar to 133 V(STP)/V at 173 K and 5 bar, with an isosteric heat of adsorption of ca. 14 kJ/mol in the high temperature range (288-318 K). Overall, the experimental and computational data suggest high preferential uptake for methane gas relative to water vapor within FMOF-1 pores with ease of desorption and high framework stability under operative temperature and moisture conditions.


Subject(s)
Methane/chemistry , Organometallic Compounds/chemistry , Water/chemistry , Adsorption , Hydrophobic and Hydrophilic Interactions , Particle Size , Porosity , Quantum Theory , Surface Properties
2.
J Am Chem Soc ; 133(32): 12849-57, 2011 Aug 17.
Article in English | MEDLINE | ID: mdl-21736366

ABSTRACT

The unusual uptake behavior and preferential adsorption of CO(2) over N(2) are investigated in a flexible metal-organic framework system, Zn(2)(bdc)(2)(bpee), where bpdc = 4,4'-biphenyl dicarboxylate and bpee = 1,2-bis(4-pyridyl)ethylene, using Raman and IR spectroscopy. The results indicate that the interaction of CO(2) with the framework induces a twisting of one of its ligands, which is possible because of the type of connectivity of the carboxylate end group of the ligand to the metal center and the specific interaction of CO(2) with the framework. The flexibility of the bpee pillars allows the structure to respond to the twisting, fostering the adsorption of more CO(2). DFT calculations support the qualitative picture derived from the experimental analysis. The adsorption sites at higher loading have been identified using a modified van der Waals-Density Functional Theory method, showing that the more energetically favorable positions for the CO(2) molecules are closer to the C═C bond of the bpee and the C-C bond of the bpdc ligands instead of the benzene and pyridine rings of these ligands. These findings are consistent with changes observed using Raman spectroscopy, which is useful for detecting both specific guest-host interactions and structural changes in the framework.

3.
Langmuir ; 24(14): 7269-77, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18558777

ABSTRACT

Label-free detection of DNA molecules on chemically vapor-deposited diamond surfaces is achieved with spectroscopic ellipsometry in the infrared and vacuum ultraviolet range. This nondestructive method has the potential to yield information on the average orientation of single as well as double-stranded DNA molecules, without restricting the strand length to the persistence length. The orientational analysis based on electronic excitations in combination with information from layer thicknesses provides a deeper understanding of biological layers on diamond. The pi-pi* transition dipole moments, corresponding to a transition at 4.74 eV, originate from the individual bases. They are in a plane perpendicular to the DNA backbone with an associated n-pi* transition at 4.47 eV. For 8-36 bases of single- and double-stranded DNA covalently attached to ultra-nanocrystalline diamond, the ratio between in- and out-of-plane components in the best fit simulations to the ellipsometric spectra yields an average tilt angle of the DNA backbone with respect to the surface plane ranging from 45 degrees to 52 degrees . We comment on the physical meaning of the calculated tilt angles. Additional information is gathered from atomic force microscopy, fluorescence imaging, and wetting experiments. The results reported here are of value in understanding and optimizing the performance of the electronic readout of a diamond-based label-free DNA hybridization sensor.


Subject(s)
DNA/chemistry , Diamond/chemistry , Crystallization , DNA/ultrastructure , Desiccation , Microscopy, Atomic Force , Nucleic Acid Conformation , Optics and Photonics , Spectrophotometry , Surface Properties
4.
J Phys Chem B ; 110(3): 1332-7, 2006 Jan 26.
Article in English | MEDLINE | ID: mdl-16471682

ABSTRACT

The electrochemical grafting process of 4-nitrobenzene and 4-methoxybenzene (anisole) from diazonium salt solutions has been investigated in situ by monitoring the current density, the band bending, and the nonradiative surface recombination during grafting at different potentials and different concentrations of the diazonium salt in the solution. Ex situ infrared spectroscopic ellipsometry has been used to inspect the Si surface species before and after the grafting process. The band bending decreases with either increasing concentration of diazonium salt or when the redox potential of the diazonium compound (anisole) is nearer to the competing H+/H2 couple. The surface recombination increases at more cathodic potentials if an electron donor group is present at the phenyl ring (nitrobenzene) and vice versa for the electron acceptor group (anisole). The influence of side reactions can be reduced by use of moderate concentration and moderate or strong cathodic potential, depending on the redox potential of the diazonium compound.


Subject(s)
Diazonium Compounds/chemistry , Silicon/chemistry , Electrochemistry , Electrons , Oxidation-Reduction , Surface Properties , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...