Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Clin Cancer Res ; 26(1): 46-53, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31732523

ABSTRACT

PURPOSE: To report the 5-year overall survival (OS) landmark and the long-term safety profile of vemurafenib plus cobimetinib (BRAF plus MEK inhibition, respectively) in the BRIM7 study. PATIENTS AND METHODS: This phase Ib, dose-finding, and expansion study evaluated combination treatment with vemurafenib and cobimetinib in two cohorts of patients with advanced BRAF V600-mutated melanoma: patients who were BRAF inhibitor (BRAFi)-naïve (n = 63) or patients who had progressed on prior treatment with BRAFi monotherapy [vemurafenib monotherapy-progressive disease (PD); n = 66]. Patients in the dose-escalation phase received vemurafenib at 720 or 960 mg twice daily in combination with cobimetinib at 60, 80, or 100 mg/d for 14 days on/14 days off, 21 days on/7 days off, or continuously. Two regimens were selected for expansion: vemurafenib (720 and 960 mg twice daily) and cobimetinib (60 mg/d 21/7). RESULTS: Median OS was 31.8 months [95% confidence interval (CI), 24.5-not estimable] in the BRAFi-naïve cohort. The landmark OS rate plateaued at 39.2% at years 4 and 5 of follow-up. In the vemurafenib monotherapy-PD cohort, the median OS was 8.5 months (95% CI, 6.7-11.1), and the landmark OS rate plateaued at 14.0% from 3 years of follow-up. No increase was observed in the frequency and severity of adverse events with long-term follow-up. No new toxicities were detected, and there was no increase in the frequency of symptomatic MEK inhibitor class-effect adverse events. CONCLUSIONS: A subset of patients with advanced BRAF V600-mutated melanoma treated with a combination regimen of vemurafenib and cobimetinib achieve favorable long-term outcomes.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Melanoma/drug therapy , Mutation , Proto-Oncogene Proteins B-raf/genetics , Skin Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Azetidines/administration & dosage , Cohort Studies , Disease-Free Survival , Female , Follow-Up Studies , Humans , Male , Maximum Tolerated Dose , Melanoma/genetics , Melanoma/pathology , Middle Aged , Patient Safety , Piperidines/administration & dosage , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Treatment Outcome , Vemurafenib/administration & dosage , Young Adult
2.
Clin Cancer Res ; 25(11): 3239-3246, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30824584

ABSTRACT

PURPOSE: Previous investigations identified transcriptional signatures associated with innate resistance to anti-programmed cell death protein 1 therapy in melanoma. This analysis aimed to increase understanding of the role of baseline genetic features in the variability of response to BRAF and MEK inhibitor therapy for BRAF V600-mutated metastatic melanoma. PATIENTS AND METHODS: This exploratory analysis compared genomic features, using whole-exome and RNA sequencing, of baseline tumors from patients who had complete response versus rapid progression (disease progression at first postbaseline assessment) on treatment with cobimetinib combined with vemurafenib or vemurafenib alone. Associations of gene expression with progression-free survival or overall survival were assessed by Cox proportional hazards modeling. RESULTS: Whole-exome sequencing showed that MITF and TP53 alterations were more frequent in tumors from patients with rapid progression, while NF1 alterations were more frequent in tumors from patients with complete response. However, the low frequency of alterations in any one gene precluded their characterization as drivers of response/resistance. Analysis of RNA profiles showed that expression of immune response-related genes was enriched in tumors from patients with complete response, while expression of keratinization-related genes was enriched in tumors from patients who experienced rapid progression. CONCLUSIONS: These findings suggest that enriched immune infiltration might be a shared feature favoring response to both targeted and immune therapies, while features of innate resistance to targeted and immune therapies were distinct.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Melanoma/drug therapy , Melanoma/genetics , Mutation , Proto-Oncogene Proteins B-raf/genetics , Alleles , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Azetidines/administration & dosage , Biomarkers, Tumor , Clinical Trials, Phase II as Topic , Clinical Trials, Phase III as Topic , Gene Expression Profiling , Genomics/methods , Humans , Melanoma/mortality , Melanoma/pathology , Piperidines/administration & dosage , Randomized Controlled Trials as Topic , Retrospective Studies , Treatment Outcome , Vemurafenib/administration & dosage , Exome Sequencing
3.
Breast Cancer Res ; 20(1): 109, 2018 09 05.
Article in English | MEDLINE | ID: mdl-30185228

ABSTRACT

BACKGROUND: This phase Ib study (NCT00960960) evaluated pictilisib (GDC-0941; pan-phosphatidylinositol 3-kinase inhibitor) plus paclitaxel, with and without bevacizumab or trastuzumab, or in combination with letrozole, in patients with locally recurrent or metastatic breast cancer. METHODS: This was a three-part multischedule study. Patients in parts 1 and 2, which comprised 3 + 3 dose escalation and cohort expansion stages, received pictilisib (60-330 mg) plus paclitaxel (90 mg/m2) with and without bevacizumab (10 mg/kg) or trastuzumab (2-4 mg/kg). In part 3, patients received pictilisib (260 mg) plus letrozole (2.5 mg). Primary objectives were evaluation of safety and tolerability, identification of dose-limiting toxicities (DLTs) and the maximum tolerated dose (MTD) of pictilisib, and recommendation of a phase II dosing regimen. Secondary endpoints included pharmacokinetics and preliminary antitumor activity. RESULTS: Sixty-nine patients were enrolled; all experienced at least one adverse event (AE). Grade ≥ 3 AEs, serious AEs, and AEs leading to death were reported in 50 (72.5%), 21 (30.4%), and 2 (2.9%) patients, respectively. Six (8.7%) patients reported a DLT, and the MTD and recommended phase II pictilisib doses were established where possible. There was no pictilisib-paclitaxel drug-drug interaction. Two (3.4%) patients experienced complete responses, and 17 (29.3%) patients had partial responses. CONCLUSIONS: Combining pictilisib with paclitaxel, with and without bevacizumab or trastuzumab, or letrozole, had a manageable safety profile in patients with locally recurrent or metastatic breast cancer. The combination had antitumor activity, and the additive effect of pictilisib supported further investigation in a randomized study. TRIAL REGISTRATION: ClinicalTrials.gov, NCT00960960 . Registered on August 13, 2009.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/drug therapy , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Bevacizumab/administration & dosage , Bevacizumab/adverse effects , Breast Neoplasms/pathology , Cohort Studies , Diarrhea/chemically induced , Dose-Response Relationship, Drug , Female , Humans , Indazoles/administration & dosage , Indazoles/adverse effects , Letrozole/administration & dosage , Letrozole/adverse effects , Middle Aged , Nausea/chemically induced , Paclitaxel/administration & dosage , Paclitaxel/adverse effects , Sulfonamides/administration & dosage , Sulfonamides/adverse effects , Trastuzumab/administration & dosage , Trastuzumab/adverse effects
4.
Lancet Oncol ; 19(3): 310-322, 2018 03.
Article in English | MEDLINE | ID: mdl-29449192

ABSTRACT

BACKGROUND: Obesity has been linked to increased mortality in several cancer types; however, the relation between obesity and survival outcomes in metastatic melanoma is unknown. The aim of this study was to examine the association between body-mass index (BMI) and progression-free survival or overall survival in patients with metastatic melanoma who received targeted therapy, immunotherapy, or chemotherapy. METHODS: This retrospective study analysed independent cohorts of patients with metastatic melanoma assigned to treatment with targeted therapy, immunotherapy, or chemotherapy in randomised clinical trials and one retrospective study of patients treated with immunotherapy. Patients were classified according to BMI, following the WHO definitions, as underweight, normal, overweight, or obese. Patients without BMI and underweight patients were excluded. The primary outcomes were the associations between BMI and progression-free survival or overall survival, stratified by treatment type and sex. We did multivariable analyses in the independent cohorts, and combined adjusted hazard ratios in a mixed-effects meta-analysis to provide a precise estimate of the association between BMI and survival outcomes; heterogeneity was assessed with meta-regression analyses. Analyses were done on the predefined intention-to-treat population in the randomised controlled trials and on all patients included in the retrospective study. FINDINGS: The six cohorts consisted of a total of 2046 patients with metastatic melanoma treated with targeted therapy, immunotherapy, or chemotherapy between Aug 8, 2006, and Jan 15, 2016. 1918 patients were included in the analysis. Two cohorts containing patients from randomised controlled trials treated with targeted therapy (dabrafenib plus trametinib [n=599] and vemurafenib plus cobimetinib [n=240]), two cohorts containing patients treated with immunotherapy (one randomised controlled trial of ipilimumab plus dacarbazine [n=207] and a retrospective cohort treated with pembrolizumab, nivolumab, or atezolizumab [n=331]), and two cohorts containing patients treated with chemotherapy (two randomised controlled trials of dacarbazine [n=320 and n=221]) were classified according to BMI as normal (694 [36%] patients), overweight (711 [37%]), or obese (513 [27%]). In the pooled analysis, obesity, compared with normal BMI, was associated with improved survival in patients with metastatic melanoma (average adjusted hazard ratio [HR] 0·77 [95% CI 0·66-0·90] for progression-free survival and 0·74 [0·58-0·95] for overall survival). The survival benefit associated with obesity was restricted to patients treated with targeted therapy (HR 0·72 [0·57-0·91] for progression-free survival and 0·60 [0·45-0·79] for overall survival) and immunotherapy (HR 0·75 [0·56-1·00] and 0·64 [0·47-0·86]). No associations were observed with chemotherapy (HR 0·87 [0·65-1·17, pinteraction=0·61] for progression-free survival and 1·03 [0·80-1·34, pinteraction=0·01] for overall survival). The association of BMI with overall survival for patients treated with targeted and immune therapies differed by sex, with inverse associations in men (HR 0·53 [0·40-0·70]), but no associations observed in women (HR 0·85 [0·61-1·18, pinteraction=0·03]). INTERPRETATION: Our results suggest that in patients with metastatic melanoma, obesity is associated with improved progression-free survival and overall survival compared with those outcomes in patients with normal BMI, and that this association is mainly seen in male patients treated with targeted or immune therapy. These results have implications for the design of future clinical trials for patients with metastatic melanoma and the magnitude of the benefit found supports further investigation of the underlying mechanism of these associations. FUNDING: ASCO/CCF Young Investigator Award, ASCO/CCF Career Development Award, MD Anderson Cancer Center (MDACC) Melanoma Moonshot Program, MDACC Melanoma SPORE, and the Dr Miriam and Sheldon G Adelson Medical Research Foundation.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Body Mass Index , Melanoma/drug therapy , Molecular Targeted Therapy , Obesity/epidemiology , Skin Neoplasms/drug therapy , Adolescent , Adult , Aged , Aged, 80 and over , Antineoplastic Agents, Immunological/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Female , Humans , Male , Melanoma/immunology , Melanoma/mortality , Melanoma/secondary , Middle Aged , Molecular Targeted Therapy/adverse effects , Molecular Targeted Therapy/mortality , Obesity/diagnosis , Obesity/mortality , Progression-Free Survival , Protective Factors , Randomized Controlled Trials as Topic , Retrospective Studies , Risk Assessment , Risk Factors , Skin Neoplasms/immunology , Skin Neoplasms/mortality , Skin Neoplasms/pathology , Time Factors , Treatment Outcome , Young Adult
5.
Br J Cancer ; 118(6): 777-784, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29438370

ABSTRACT

BACKGROUND: In the coBRIM study, cobimetinib plus vemurafenib (C+V) significantly improved survival outcomes vs placebo and vemurafenib (P+V) in patients with advanced/metastatic BRAFV600-mutated melanoma. An analysis of health-related quality of life (HRQOL) from coBRIM is reported. METHODS: Patients completing the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire Core 30 (QLQ-C30) at baseline and ⩾1 time point thereafter constituted the analysis population. Change from baseline ⩾10 points was considered clinically meaningful. RESULTS: Mean baseline scores for all QLQ-C30 domains were similar between arms. Most on-treatment scores for QLQ-C30 domains were also comparable between arms. A transient deterioration in role function in cycle 1 day 15 (C1D15; -14.7 points) in the P+V arm and improvement in insomnia in the C+V arm at C2D15 (-12.4 points) was observed. Among patients who experienced a ⩾10-point change from baseline (responders), between-group differences were greatest for insomnia (16%), social functioning (10%), fatigue (9%) and pain (7%), all favouring C+V. Diarrhoea, photosensitivity reaction, pyrexia, and rash did not meaningfully affect global health status (GHS). Serous retinopathy was associated with a transient decrease in GHS at C1D15 assessment. CONCLUSIONS: In patients with advanced/metastatic BRAFV600-mutated melanoma, treatment with C+V maintained HRQOL compared with P+V, with superior efficacy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Melanoma/drug therapy , Mutation , Proto-Oncogene Proteins B-raf/genetics , Azetidines/administration & dosage , Double-Blind Method , Female , Humans , Longitudinal Studies , Male , Melanoma/enzymology , Melanoma/genetics , Piperidines/administration & dosage , Placebos , Quality of Life , Vemurafenib/administration & dosage
6.
JCO Precis Oncol ; 2: 1-18, 2018 Nov.
Article in English | MEDLINE | ID: mdl-35135126

ABSTRACT

PURPOSE: The treatment of advanced BRAFV600-mutated melanomas with BRAF inhibitors (BRAFi) has improved survival, but the efficacy of BRAFi varies among individuals and the development of acquired resistance to BRAFi through reactivation of mitogen-activated protein kinase (MAPK) signaling is common. We performed an exploratory, retrospective analysis to investigate the effects of BRAFV600 allelic balance, coexisting oncogene mutations, cell proliferation signaling levels, and loss of PTEN expression on progression-free survival (PFS) in patients in the phase III coBRIM study, which compared the combination of the MEK inhibitor cobimetinib with the BRAFi vemurafenib versus vemurafenib as monotherapy. METHODS: Baseline tumor samples from the intention-to-treat population were analyzed by targeted deep sequencing at a median coverage of 3,600× and by immunohistochemistry for cell proliferation markers, BRAFV600E, and PTEN. The association of these biomarkers with PFS was assessed by Cox proportional hazards modeling. Gene expression in relation to loss of PTEN was profiled by RNA sequencing in 205 patient samples and 42 BRAFV600-mutated melanoma cell lines. RESULTS: Neither BRAFV600 allelic balance nor coexisting mutations in the RAS/RAF/RTK pathway affected PFS in either treatment group. Increased baseline MAPK signaling and cell proliferation did not affect PFS in patients treated with cobimetinib combined with vemurafenib. PTEN loss was associated with reduced PFS in patients treated with vemurafenib alone but not in patients treated with cobimetinib combined with vemurafenib. CONCLUSION: Deeper inhibition of the MAPK pathway through targeting of both MEK and BRAF may override the effects of tumor heterogeneity and improve PFS in all patients with advanced BRAFV600 melanoma.

7.
Pigment Cell Melanoma Res ; 31(4): 516-522, 2018 07.
Article in English | MEDLINE | ID: mdl-29156488

ABSTRACT

The prognostic significance of programmed death ligand-1 (PD-L1) on treatment outcomes in patients receiving BRAF with or without MEK inhibitors is not well understood. This retrospective exploratory analysis evaluated the association of tumour PD-L1 expression with progression-free survival (PFS) and overall survival (OS) among 210 patients in the coBRIM trial treated with cobimetinib plus vemurafenib or placebo plus vemurafenib. In the vemurafenib cohort, there was a trend of increased PFS and OS in those with PD-L1+ melanoma, with hazard ratios (HRs; PD-L1+ vs. PD-L1- ) of 0.70 (95% CI, 0.46-1.07) and 0.69 (95% CI, 0.42-1.13) for PFS and OS, respectively. However, in patients treated with cobimetinib plus vemurafenib, a similar trend was not observed with HRs (PD-L1+ versus PD-L1- ) of 1.04 (95% CI, 0.66-1.68) and 0.94 (95% CI, 0.57-1.57) for PFS and OS, respectively. The combination cobimetinib plus vemurafenib appears to overcome the poor prognosis associated with low PD-L1 expression.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , B7-H1 Antigen/biosynthesis , Gene Expression Regulation, Neoplastic , Melanoma , Mutation , Proto-Oncogene Proteins B-raf , Aged , Azetidines/administration & dosage , B7-H1 Antigen/genetics , Disease-Free Survival , Female , Humans , Male , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Melanoma/mortality , Middle Aged , Piperidines/administration & dosage , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Survival Rate , Vemurafenib/administration & dosage
8.
Clin Cancer Res ; 23(17): 5238-5245, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28536307

ABSTRACT

Purpose: The association of tumor gene expression profiles with progression-free survival (PFS) outcomes in patients with BRAFV600-mutated melanoma treated with vemurafenib or cobimetinib combined with vemurafenib was evaluated.Experimental Design: Gene expression of archival tumor samples from patients in four trials (BRIM-2, BRIM-3, BRIM-7, and coBRIM) was evaluated. Genes significantly associated with PFS (P < 0.05) were identified by univariate Cox proportional hazards modeling, then subjected to unsupervised hierarchical clustering, principal component analysis, and recursive partitioning to develop optimized gene signatures.Results: Forty-six genes were identified as significantly associated with PFS in both BRIM-2 (n = 63) and the vemurafenib arm of BRIM-3 (n = 160). Two distinct signatures were identified: cell cycle and immune. Among vemurafenib-treated patients, the cell-cycle signature was associated with shortened PFS compared with the immune signature in the BRIM-2/BRIM-3 training set [hazard ratio (HR) 1.8; 95% confidence interval (CI), 1.3-2.6, P = 0.0001] and in the coBRIM validation set (n = 101; HR, 1.6; 95% CI, 1.0-2.5; P = 0.08). The adverse impact of the cell-cycle signature on PFS was not observed in patients treated with cobimetinib combined with vemurafenib (n = 99; HR, 1.1; 95% CI, 0.7-1.8; P = 0.66).Conclusions: In vemurafenib-treated patients, the cell-cycle gene signature was associated with shorter PFS. However, in cobimetinib combined with vemurafenib-treated patients, both cell cycle and immune signature subgroups had comparable PFS. Cobimetinib combined with vemurafenib may abrogate the adverse impact of the cell-cycle signature. Clin Cancer Res; 23(17); 5238-45. ©2017 AACR.


Subject(s)
Azetidines/administration & dosage , Indoles/administration & dosage , Melanoma/drug therapy , Piperidines/administration & dosage , Proto-Oncogene Proteins B-raf/genetics , Sulfonamides/administration & dosage , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Azetidines/adverse effects , Disease-Free Survival , Drug Resistance, Neoplasm/genetics , Female , Humans , Indoles/adverse effects , Male , Melanoma/genetics , Melanoma/pathology , Middle Aged , Mutation , Piperidines/adverse effects , Proportional Hazards Models , Sulfonamides/adverse effects , Treatment Outcome , Vemurafenib
9.
Lancet Oncol ; 17(9): 1248-60, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27480103

ABSTRACT

BACKGROUND: The combination of cobimetinib with vemurafenib improves progression-free survival compared with placebo and vemurafenib in previously untreated patients with BRAF(V600)-mutant advanced melanoma, as previously reported in the coBRIM study. In this Article, we report updated efficacy results, including overall survival and safety after longer follow-up, and selected biomarker correlative studies. METHODS: In this double-blind, randomised, placebo-controlled, multicentre study, adult patients (aged ≥18 years) with histologically confirmed BRAF(V600) mutation-positive unresectable stage IIIC or stage IV melanoma were randomly assigned (1:1) using an interactive response system to receive cobimetinib (60 mg once daily for 21 days followed by a 7-day rest period in each 28-day cycle) or placebo, in combination with oral vemurafenib (960 mg twice daily). Progression-free and overall survival were primary and secondary endpoints, respectively; all analyses were done on the intention-to-treat population. This study is registered with ClinicalTrials.gov, number NCT01689519, and is ongoing but no longer recruiting participants. FINDINGS: Between Jan 8, 2013, and Jan 31, 2014, 495 eligible adult patients were enrolled and randomly assigned to the cobimetinib plus vemurafenib group (n=247) or placebo plus vemurafenib group (n=248). At a median follow-up of 14·2 months (IQR 8·5-17·3), the updated investigator-assessed median progression-free survival was 12·3 months (95% CI 9·5-13·4) for cobimetinib and vemurafenib versus 7·2 months (5·6-7·5) for placebo and vemurafenib (HR 0·58 [95% CI 0·46-0·72], p<0·0001). The final analysis for overall survival occurred when 255 (52%) patients had died (Aug 28, 2015). Median overall survival was 22·3 months (95% CI 20·3-not estimable) for cobimetinib and vemurafenib versus 17·4 months (95% CI 15·0-19·8) for placebo and vemurafenib (HR 0·70, 95% CI 0·55-0·90; p=0·005). The safety profile for cobimetinib and vemurafenib was tolerable and manageable, and no new safety signals were observed with longer follow-up. The most common grade 3-4 adverse events occurring at a higher frequency in patients in the cobimetinib and vemurafenib group compared with the vemurafenib group were γ-glutamyl transferase increase (36 [15%] in the cobimetinib and vemurafenib group vs 25 [10%] in the placebo and vemurafenib group), blood creatine phosphokinase increase (30 [12%] vs one [<1%]), and alanine transaminase increase (28 [11%] vs 15 [6%]). Serious adverse events occurred in 92 patients (37%) in the cobimetinib and vemurafenib group and 69 patients (28%) in the vemurafenib group. Pyrexia (six patients [2%]) and dehydration (five patients [2%]) were the most common serious adverse events reported in the cobimetinib and vemurafenib group. A total of 259 patients have died: 117 (47%) in the cobimetinib and vemurafenib group and 142 (58%) in the vemurafenib group. The primary cause of death was disease progression in most patients: 109 (93%) of 117 in the cobimetinib and vemurafenib group and 133 (94%) of 142 in the vemurafenib group. INTERPRETATION: These data confirm the clinical benefit of cobimetinib combined with vemurafenib and support the use of the combination as a standard first-line approach to improve survival in patients with advanced BRAF(V600)-mutant melanoma. FUNDING: F Hoffmann-La Roche-Genentech.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Melanoma/drug therapy , Mutation/genetics , Proto-Oncogene Proteins B-raf/genetics , Skin Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Azetidines/administration & dosage , Biomarkers, Tumor/genetics , Double-Blind Method , Female , Follow-Up Studies , Humans , Indoles/administration & dosage , Male , Melanoma/genetics , Melanoma/pathology , Middle Aged , Neoplasm Metastasis , Neoplasm Staging , Piperidines/administration & dosage , Prognosis , Skin Neoplasms/genetics , Skin Neoplasms/secondary , Sulfonamides/administration & dosage , Survival Rate , Vemurafenib , Young Adult
10.
Drug Metab Dispos ; 44(1): 28-39, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26451002

ABSTRACT

The pharmacokinetics, metabolism, and excretion of cobimetinib, a MEK inhibitor, were characterized in healthy male subjects (n = 6) following a single 20 mg (200 µCi) oral dose. Unchanged cobimetinib and M16 (glycine conjugate of hydrolyzed cobimetinib) were the major circulating species, accounting for 20.5% and 18.3% of the drug-related material in plasma up to 48 hours postdose, respectively. Other circulating metabolites were minor, accounting for less than 10% of drug-related material in plasma. The total recovery of the administered radioactivity was 94.3% (±1.6%, S.D.) with 76.5% (±2.3%) in feces and 17.8% (±2.5%) in urine. Metabolite profiling indicated that cobimetinib had been extensively metabolized with only 1.6% and 6.6% of the dose remaining as unchanged drug in urine and feces, respectively. In vitro phenotyping experiments indicated that CYP3A4 was predominantly responsible for metabolizing cobimetinib. From this study, we concluded that cobimetinib had been well absorbed (fraction absorbed, Fa = 0.88). Given this good absorption and the previously determined low hepatic clearance, the systemic exposures were lower than expected (bioavailability, F = 0.28). We hypothesized that intestinal metabolism had strongly attenuated the oral bioavailability of cobimetinib. Supporting this hypothesis, the fraction escaping gut wall elimination (Fg) was estimated to be 0.37 based on F and Fa from this study and the fraction escaping hepatic elimination (Fh) from the absolute bioavailability study (F = Fa × Fh × Fg). Physiologically based pharmacokinetics modeling also showed that intestinal clearance had to be included to adequately describe the oral profile. These collective data suggested that cobimetinib was well absorbed following oral administration and extensively metabolized with intestinal first-pass metabolism contributing to its disposition.


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Azetidines/administration & dosage , Azetidines/pharmacokinetics , Intestinal Absorption , Intestinal Mucosa/metabolism , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Piperidines/administration & dosage , Piperidines/pharmacokinetics , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacokinetics , Renal Elimination , Administration, Oral , Adult , Antineoplastic Agents/blood , Antineoplastic Agents/urine , Azetidines/blood , Azetidines/urine , Biological Availability , Biotransformation , Carbon Radioisotopes , Cytochrome P-450 CYP3A/metabolism , Feces/chemistry , Glycine/metabolism , Healthy Volunteers , Humans , Hydrolysis , Intestines/enzymology , Male , Microsomes, Liver/metabolism , Middle Aged , Mitogen-Activated Protein Kinase Kinases/metabolism , Models, Biological , Piperidines/blood , Piperidines/urine , Protein Kinase Inhibitors/blood , Protein Kinase Inhibitors/urine , Substrate Specificity , Young Adult
11.
Clin Cancer Res ; 20(24): 6324-35, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25326231

ABSTRACT

PURPOSE: The aim of this study was to identify noninvasive pharmacodynamic biomarkers of FGFR3-targeted therapies in bladder cancer to facilitate the clinical development of experimental agent targeting FGFR3. EXPERIMENTAL DESIGN: Potential soluble pharmacodynamic biomarkers of FGFR3 were identified using a combination of transcriptional profiling and biochemical analyses in preclinical models. Two matrix metalloproteinases (MMP), MMP-1 and MMP-10, were selected for further studies in human bladder cancer xenograft models treated with a specific anti-FGFR3 monoclonal antibody, R3Mab. Serum and urinary levels of MMP-1 and MMP-10 were determined in healthy donors and patients with bladder cancer. The modulation of MMP-1 and MMP-10 by R3Mab in patients with bladder cancer was further evaluated in a phase I dose-escalation study. RESULTS: MMP-1 and MMP-10 mRNA and protein were downmodulated by FGFR3 shRNA and R3Mab in bladder cancer cell lines. FGFR3 signaling promoted the expression and secretion of MMP-1 and pro-MMP-10 in a MEK-dependent fashion. In bladder cancer xenograft models, R3Mab substantially blocked tumor progression and reduced the protein levels of human MMP-1 and pro-MMP-10 in tumor tissues as well as in mouse serum. Furthermore, both MMP-1 and pro-MMP-10 were elevated in the urine of patients with advanced bladder cancer. In a phase I dose-escalation trial, R3Mab administration resulted in an acute reduction of urinary MMP-1 and pro-MMP-10 levels in patients with bladder cancer. CONCLUSION: These findings reveal a critical role of FGFR3 in regulating MMP-1 and pro-MMP-10 expression and secretion, and identify urinary MMP-1 and pro-MMP-10 as potential pharmacodynamic biomarkers for R3Mab in patients with bladder cancer.


Subject(s)
Enzyme Precursors , Matrix Metalloproteinase 10/urine , Matrix Metalloproteinase 1/urine , Protein Kinase Inhibitors/therapeutic use , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Urinary Bladder Neoplasms/urine , Animals , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biomarkers/urine , Cell Line, Tumor , Clinical Trials, Phase I as Topic , Disease Models, Animal , Female , Gene Expression , Gene Knockdown Techniques , Humans , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 10/genetics , Mice , Protein Kinase Inhibitors/pharmacology , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Signal Transduction , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Xenograft Model Antitumor Assays
12.
Mol Pharm ; 10(11): 4046-54, 2013 Nov 04.
Article in English | MEDLINE | ID: mdl-24010577

ABSTRACT

Cobimetinib is a potent and highly selective inhibitor of MEK1/2. Since cobimetinib exhibited absorption variability in cancer patients, a series of single-dose studies in healthy subjects were conducted to determine absolute bioavailability and elucidate potential effects of formulation, food, and elevated gastric pH on cobimetinib bioavailability. Three crossover trials were performed with a 20 mg cobimetinib oral dose: absolute bioavailability using a 2 mg intravenous infusion (n = 13), relative bioavailability of tablets versus capsules and food effect (n = 20), and drug interaction with a proton pump inhibitor (20 mg of rabeprazole daily for 5 days prior to cobimetinib administration; n = 20). Absolute bioavailability of cobimetinib was 46.2% (24.2, CV %), likely due to metabolism rather than incomplete absorption. The mean systemic clearance of cobimetinib was low (11.7 L/h [28.2, CV %]). Administration of cobimetinib tablets with a high-fat meal delayed drug absorption (prolonged tmax) but had no statistically significant effect on cobimetinib exposure (Cmax and AUC0-∞). Tablet and capsule formulations of cobimetinib showed comparable exposures. Cobimetinib exhibited delayed absorption (tmax) in the presence of rabeprazole, with no statistically significant effects on drug exposure (Cmax and AUC0-∞) in the fasted state. In conclusion, cobimetinib oral absorption was not affected by change in formulation, food, or elevated gastric pH.


Subject(s)
Azetidines/pharmacokinetics , Food , Piperidines/pharmacokinetics , Proton Pump Inhibitors/pharmacology , Rabeprazole/pharmacology , Absorption/drug effects , Administration, Oral , Adult , Biological Availability , Female , Humans , Hydrogen-Ion Concentration , Male , Middle Aged , Molecular Structure , Young Adult
13.
Invest New Drugs ; 31(2): 363-9, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22547164

ABSTRACT

PURPOSE: SGX523 is an orally bio-available, ATP competitive, small molecule inhibitor of MET, binding the kinase domain active site in a novel mode. Two phase 1, open-label, dose-escalation studies of SGX523 were conducted to evaluate both interrupted and continuous dosing schedules. METHODS: Thirty-six patients per study were planned to be enrolled. The first study explored a 21-day cycle with SGX523 administered on an intermittent schedule at a starting dose of 60 mg PO BID for 14 days followed by 7 days of rest. The second protocol explored a continuous 28-day dosing schedule with SGX523 administered at a starting dose of 20 mg PO BID for 28 days without rest. RESULTS: A total of 10 patients were enrolled, 2 on the intermittent dosing protocol and 8 on the continuous dosing protocol. All 6 patients that received daily doses of ≥ 80 mg developed unexpected renal failure manifested by an early rise of serum blood urea nitrogen and creatinine. Human PK analysis revealed the formation of two insoluble metabolites at levels not seen in the rat or dog preclinical toxicology studies. Subsequent primate toxicology and toxicokinetic evaluation replicated human findings, and histological examination of the monkey kidneys revealed the formation of crystals both within the renal tubules and within giant cell macrophages. CONCLUSION: Two-species toxicology studies of SGX523 did not predict the occurrence of renal toxicity in the human. Subsequent primate toxicology studies suggest the cause of the renal failure seen in humans was a crystal nephropathy secondary to insoluble metabolites. SGX523 is no longer in clinical development.


Subject(s)
Neoplasms/drug therapy , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Pyridazines/therapeutic use , Renal Insufficiency/chemically induced , Renal Insufficiency/pathology , Triazoles/therapeutic use , Adolescent , Animals , Dogs , Follow-Up Studies , Haplorhini , Humans , Male , Prognosis , Rats
14.
Mol Cancer Ther ; 8(12): 3181-90, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19934279

ABSTRACT

The MET receptor tyrosine kinase has emerged as an important target for the development of novel cancer therapeutics. Activation of MET by mutation or gene amplification has been linked to kidney, gastric, and lung cancers. In other cancers, such as glioblastoma, autocrine activation of MET has been demonstrated. Several classes of ATP-competitive inhibitor have been described, which inhibit MET but also other kinases. Here, we describe SGX523, a novel, ATP-competitive kinase inhibitor remarkable for its exquisite selectivity for MET. SGX523 potently inhibited MET with an IC50 of 4 nmol/L and is >1,000-fold selective versus the >200-fold selectivity of other protein kinases tested in biochemical assays. Crystallographic study revealed that SGX523 stabilizes MET in a unique inactive conformation that is inaccessible to other protein kinases, suggesting an explanation for the selectivity. SGX523 inhibited MET-mediated signaling, cell proliferation, and cell migration at nanomolar concentrations but had no effect on signaling dependent on other protein kinases, including the closely related RON, even at micromolar concentrations. SGX523 inhibition of MET in vivo was associated with the dose-dependent inhibition of growth of tumor xenografts derived from human glioblastoma and lung and gastric cancers, confirming the dependence of these tumors on MET catalytic activity. Our results show that SGX523 is the most selective inhibitor of MET catalytic activity described to date and is thus a useful tool to investigate the role of MET kinase in cancer without the confounding effects of promiscuous protein kinase inhibition.


Subject(s)
Adenosine Triphosphate/pharmacology , Neoplasms/prevention & control , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Pyridazines/pharmacology , Triazoles/pharmacology , Xenograft Model Antitumor Assays , Animals , Catalysis/drug effects , Cell Line , Cell Line, Tumor , Cell Movement/drug effects , Dose-Response Relationship, Drug , Female , Humans , Kinetics , Mice , Mice, Nude , Models, Molecular , Molecular Structure , Neoplasms/metabolism , Neoplasms/pathology , Phosphorylation/drug effects , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Structure, Secondary , Protein Structure, Tertiary , Proto-Oncogene Proteins c-met/chemistry , Proto-Oncogene Proteins c-met/metabolism , Pyridazines/chemistry , Triazoles/chemistry , Tumor Burden/drug effects
15.
Methods Mol Biol ; 426: 561-75, 2008.
Article in English | MEDLINE | ID: mdl-18542890

ABSTRACT

Phase II of the Protein Structure Initiative, funded by the NIH NIGMS (National Institute of General Medical Sciences), is a 5-year effort to determine thousands of protein structures. The New York SGX Research Center for Structural Genomics (NYSGXRC) is one of the four large-scale production centers tasked with determining 100-200 structures annually. Almost all protein production is carried out using the high throughput structural biology platform at SGX Pharmaceuticals (SGX), which supplies 120 or more ultrapure proteins per month for NYSGXRC crystallization and structure determination activities. Protocols for PCR, cloning, expression/solubility testing, fermentation, purification, and crystallization are described. General protocols and detailed experimental results for each target are updated weekly at the public PepcDB website (pepcdb.pdb.org/), and all NYSGXRC clones should be available in 2008 through the PlasmID resource operated by the Harvard Institute of Proteomics.


Subject(s)
Proteins/chemistry , Proteins/isolation & purification , Proteomics/methods , Proteomics/organization & administration , Cloning, Molecular/methods , Crystallography, X-Ray/methods , New York City , Polymerase Chain Reaction/methods , Proteins/genetics
16.
J Biol Chem ; 280(2): 1346-53, 2005 Jan 14.
Article in English | MEDLINE | ID: mdl-15528182

ABSTRACT

Cystic fibrosis is caused by defects in the cystic fibrosis transmembrane conductance regulator (CFTR), commonly the deletion of residue Phe-508 (DeltaF508) in the first nucleotide-binding domain (NBD1), which results in a severe reduction in the population of functional channels at the epithelial cell surface. Previous studies employing incomplete NBD1 domains have attributed this to aberrant folding of DeltaF508 NBD1. We report structural and biophysical studies on complete human NBD1 domains, which fail to demonstrate significant changes of in vitro stability or folding kinetics in the presence or absence of the DeltaF508 mutation. Crystal structures show minimal changes in protein conformation but substantial changes in local surface topography at the site of the mutation, which is located in the region of NBD1 believed to interact with the first membrane spanning domain of CFTR. These results raise the possibility that the primary effect of DeltaF508 is a disruption of proper interdomain interactions at this site in CFTR rather than interference with the folding of NBD1. Interestingly, increases in the stability of NBD1 constructs are observed upon introduction of second-site mutations that suppress the trafficking defect caused by the DeltaF508 mutation, suggesting that these suppressors might function indirectly by improving the folding efficiency of NBD1 in the context of the full-length protein. The human NBD1 structures also solidify the understanding of CFTR regulation by showing that its two protein segments that can be phosphorylated both adopt multiple conformations that modulate access to the ATPase active site and functional interdomain interfaces.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Nucleotides/metabolism , Protein Folding , Sequence Deletion/genetics , Amino Acid Sequence , Binding Sites , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , Kinetics , Models, Molecular , Molecular Sequence Data , Protein Conformation , Protein Denaturation , Protein Renaturation , Protein Structure, Tertiary , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...