Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38793977

ABSTRACT

The design of a mixed-mode proportional-integral-derivative (PID) controller circuit using current-feedback operational amplifiers (CFOAs) as active components is proposed. With the same circuit topology, the proposed configuration of three CFOAs, four resistors, and two capacitors is capable of performing the PID controller in each of the following four modes: voltage mode, trans-admittance mode, current mode, and trans-impedance mode. Numerous mathematical analyses are conducted to determine the controller's performance under both ideal and non-ideal conditions. Additionally, the mixed-mode second-order lowpass filter is suggested and also used to examine the workability of the proposed mixed-mode PID controller in a feedback control structure. The proposed PID controller is implemented with the commercially available IC-type CFOA AD844, and the simulation results are presented to illustrate the functionality of the controller and its closed-loop control system. According to the findings, the total power consumption of the proposed PID controller is 0.348 W, with symmetrical supply voltages of ±9 V. It also has a temperature variation of less than 0.2% over the AD844's usable range. Monte Carlo statistical analysis results revealed that the gain responses of the controller exhibited a deviation of no more than 7.72% from the theoretical value. The controlled filter in a closed-loop control system has a 43% faster rise time and peak time than the uncontrolled filter in all four modes of operation. It also has a steady-state error less than 0.2 mV for voltage responses and 0.72 µA for current responses.

2.
Sensors (Basel) ; 23(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36904956

ABSTRACT

This article presents a mixed-mode electronically tunable first-order universal filter configuration employing only one voltage differencing gain amplifier (VDGA), one capacitor, and one grounded resistor. With the appropriate selection of the input signals, the proposed circuit can realize all three first-order standard filter functions, namely low pass (LP), high pass (HP), and all pass (AP), in all four possible modes, including voltage mode (VM), trans-admittance mode (TAM), current mode (CM), and trans-impedance mode (TIM), from the same circuit structure. It also provides an electronic tuning of the pole frequency and the passband gain by varying transconductance values. Non-ideal and parasitic effect analyses of the proposed circuit were also carried out. PSPICE simulations and experimental findings have both confirmed the performance of the design. A number of simulations and experimental observations confirm the viability of the suggested configuration in practical applications.

3.
Sensors (Basel) ; 22(14)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35890982

ABSTRACT

This article presents the circuit designs for a mixed-mode universal biquadratic filter and a dual-mode quadrature oscillator, both of which use a single voltage differencing gain amplifier (VDGA), one resistor, and two capacitors. The proposed circuit has the following performance characteristics: (i) simultaneous implementation of standard biquadratic filter functions with three inputs and two outputs in all four possible modes, namely, voltage-mode (VM), current-mode (CM), trans-admittance-mode (TAM), and trans-impedance-mode (TIM); (ii) electronic adjustment of the natural angular frequency and independently single-resistance controllable high-quality factor; (iii) performing a dual-mode quadrature oscillator with simultaneous voltage and current output responses; (iv) orthogonal resistive and/or electronic control of the oscillation condition and frequency; (v) employing all grounded passive components in the quadrature oscillator function; and (vi) simpler topology due to the use of a single VDGA. VDGA non-idealities and parasitic elements are also investigated and analyzed in terms of their influence on circuit performance. To prove the study hypotheses, computer simulations with TSMC 0.18 µm CMOS technology and experimental confirmatory testing with off-the-shelf integrated circuits LM13600 have been performed.

SELECTION OF CITATIONS
SEARCH DETAIL
...