Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 133(14): 144111, 2010 Oct 14.
Article in English | MEDLINE | ID: mdl-20949991

ABSTRACT

In this paper a detailed investigation of the basis set convergence for the calculation of relativistic electron densities at the position of finite-sized atomic nuclei is presented. The development of Gauss-type basis sets for such electron densities is reported and the effect of different contraction schemes is studied. Results are then presented for picture-change corrected calculations based on the Douglas-Kroll-Hess Hamiltonian. Moreover, the role of electron correlation, the effect of the numerical integration accuracy in density functional calculations, and the convergence with respect to the order of the Douglas-Kroll-Hess Hamiltonian and the picture-change-transformed property operator are studied.

2.
J Chem Phys ; 131(3): 034113, 2009 Jul 21.
Article in English | MEDLINE | ID: mdl-19624187

ABSTRACT

A method is suggested which allows truncation of the virtual space in Cholesky decomposition-based multiconfigurational perturbation theory (CD-CASPT2) calculations with systematic improvability of the results. The method is based on a modified version of the frozen natural orbital (FNO) approach used in coupled cluster theory. The idea is to exploit the near-linear dependence among the eigenvectors of the virtual-virtual block of the second-order Moller-Plesset density matrix. It is shown that FNO-CASPT2 recovers more than 95% of the full CD-CASPT2 correlation energy while requiring only a fraction of the total virtual space, especially when large atomic orbital basis sets are in use. Tests on various properties commonly investigated with CASPT2 demonstrate the reliability of the approach and the associated reduction in computational cost and storage demand of the calculations.

3.
J Chem Phys ; 129(2): 024113, 2008 Jul 14.
Article in English | MEDLINE | ID: mdl-18624522

ABSTRACT

Using Cholesky decomposition and density fitting to approximate the electron repulsion integrals, an implementation of the complete active space self-consistent field (CASSCF) method suitable for large-scale applications is presented. Sample calculations on benzene, diaquo-tetra-mu-acetato-dicopper(II), and diuraniumendofullerene demonstrate that the Cholesky and density fitting approximations allow larger basis sets and larger systems to be treated at the CASSCF level of theory with controllable accuracy. While strict error control is an inherent property of the Cholesky approximation, errors arising from the density fitting approach are managed by using a recently proposed class of auxiliary basis sets constructed from Cholesky decomposition of the atomic electron repulsion integrals.

4.
J Chem Theory Comput ; 4(5): 694-702, 2008 May.
Article in English | MEDLINE | ID: mdl-26621084

ABSTRACT

The electronic structure and low-lying electronic states of a Co(III)(diiminato)(NPh) complex have been studied using multiconfigurational wave function theory (CASSCF/CASPT2). The results have been compared to those obtained with density functional theory. The best agreement with ab initio results is obtained with a modified B3LYP functional containing a reduced amount (15%) of Hartree-Fock exchange. A relativistic basis set with 869 functions has been employed in the most extensive ab initio calculations, where a Cholesky decomposition technique was used to overcome problems arising from the large size of the two-electron integral matrix. It is shown that this approximation reproduces results obtained with the full integral set to a high accuracy, thus opening the possibility to use this approach to perform multiconfigurational wave-function-based quantum chemistry on much larger systems relative to what has been possible until now.

SELECTION OF CITATIONS
SEARCH DETAIL
...