Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 122(45): 8828-8839, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30354136

ABSTRACT

High degrees of delithiation of layered transition metal oxide cathode active materials (NCMs and HE-NCM) for lithium-ion batteries (LIBs) was shown to lead to the release of singlet oxygen, which is accompanied by enhanced electrolyte decomposition. Here, we study the reactivity of chemically produced singlet oxygen with the commonly used cyclic and linear carbonate solvents for LIB electrolytes. On-line gassing analysis of the decomposition of ethylene carbonate (EC) and dimethyl carbonate (DMC) reveals different stability toward the chemical attack of singlet oxygen, which is produced in situ by photoexcitation of the Rose Bengal dye. Ab initio calculations and on-the-fly simulations reveal a possible reaction mechanism, confirming the experimental findings. In the case of EC, hydrogen peroxide and vinylene carbonate (VC) are found to be the products of the first reaction step of EC with singlet oxygen in the reaction cascade of the EC chemical decomposition. In contrast to EC, simulations suggested DMC to be stable in the presence of singlet oxygen, which was also confirmed experimentally. Hydrogen peroxide is detrimental for cycling of a battery. For all known cathode active materials, the potential where singlet oxygen is released is found to be already high enough to electrochemically oxidize hydrogen peroxide. The formed protons and/or water both react with the typically used LiPF6 salt to HF that then leads to transition metal dissolution from the cathode active materials. This study shows how important the chemical stability toward singlet oxygen is for today's battery systems and that a trade-off will have to be found between chemical and electrochemical stability of the solvent to be used.

2.
Phys Chem Chem Phys ; 20(35): 22753-22761, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30140797

ABSTRACT

Carbocations and carboradicals are key intermediates in organic chemistry. Typically UV laser excitation is used to induce homolytical or heterolytical bond cleavage in suitable precursor molecules. Of special interest hereby are diphenylmethyl compounds (Ph2CH-X) with X = Cl, Br as a leaving group as they form diphenylmethyl radicals (Ph2CH˙) and cations (Ph2CH+) within a femtosecond time scale in polar solvents. In this work, we build on our methodology developed for the chlorine case and investigate the photodissociation reaction of Ph2CH-Br by state-of-the-art theoretical methods. On the one hand, we employ specially adapted reactive coordinates for a grid-based wave packet dynamics in reduced dimensionality using the Wilson G-matrix ansatz for the kinetic part of the Hamiltonian. On the other hand, we use full-dimensional semiclassical on-the-fly dynamics with Tully's fewest switches surface hopping routine for comparison. We apply both methods to explain remarkable differences in experimental transient absorption measurements for Cl or Br as the leaving group. The wave packet motion, visible only for the bromine leaving group, can be related to the crucial role of the central carbon atom, which undergoes rehybridization from sp3 to sp2 during the photoinduced bond cleavage. Comparable features are the two consecutive conical intersections near the Franck-Condon region controlling the product splitting to Ph2CH˙/Br˙ and Ph2CH+/Br- as well as the difference in delay time for the respective product formation.

3.
J Phys Chem A ; 120(50): 9941-9947, 2016 Dec 22.
Article in English | MEDLINE | ID: mdl-27934475

ABSTRACT

A wide variety of organic dyes form, under certain conditions, clusters know as J- and H-aggregates. Cyanine dyes are such a class of molecules where the spatial proximity of several dyes leads to overlapping electron orbitals and thus to the creation of a new energy landscape compared to that of the individual units. In this work, we create artificial H-aggregates of exactly two Cyanine 3 (Cy3) dyes by covalently linking them to a DNA molecule with controlled subnanometer distances. The absorption spectra of these coupled systems exhibit a blue-shifted peak, whose intensity varies depending on the distance between the dyes and the rigidity of the DNA template. Simulated vibrational resolved spectra, based on molecular orbital theory, excellently reproduce the experimentally observed features. Circular dichroism spectroscopy additionally reveals distinct signals, which indicates a chiral arrangement of the dye molecules. Molecular dynamic simulations of a Cy3-Cy3 construct including a 14-base pair DNA sequence verified chiral stacking of the dye molecules.


Subject(s)
Carbocyanines/chemistry , DNA/chemistry , Circular Dichroism , Molecular Dynamics Simulation
4.
J Chem Phys ; 144(23): 234104, 2016 Jun 21.
Article in English | MEDLINE | ID: mdl-27334151

ABSTRACT

Quantum dynamics simulations require prior knowledge of the potential energy surface as well as the kinetic energy operator. Typically, they are evaluated in a low-dimensional subspace of the full configuration space of the molecule as its dimensionality increases proportional to the number of atoms. This entails the challenge to find the most suitable subspace. We present an approach to design specially adapted reactive coordinates spanning this subspace. In addition to the essential geometric changes, these coordinates take into account the relaxation of the non-reactive coordinates without the necessity of performing geometry optimizations at each grid point. The method is demonstrated for an ultrafast photoinduced bond cleavage in a commonly used organic precursor for the generation of electrophiles. The potential energy surfaces for the reaction as well as the Wilson G-matrix as part of the kinetic energy operator are shown for a complex chemical reaction, both including the relaxation of the non-reactive coordinates on equal footing. A microscopic interpretation of the shape of the G-matrix elements allows to analyze the impact of the non-reactive coordinates on the kinetic energy operator. Additionally, we compare quantum dynamics simulations with and without the relaxation of the non-reactive coordinates included in the kinetic energy operator to demonstrate its influence.

5.
Struct Dyn ; 3(4): 043205, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26958588

ABSTRACT

Photoinduced bond cleavage is often employed for the generation of highly reactive carbocations in solution and to study their reactivity. Diphenylmethyl derivatives are prominent precursors in polar and moderately polar solvents like acetonitrile or dichloromethane. Depending on the leaving group, the photoinduced bond cleavage occurs on a femtosecond to picosecond time scale and typically leads to two distinguishable products, the desired diphenylmethyl cations (Ph2CH(+)) and as competing by-product the diphenylmethyl radicals ([Formula: see text]). Conical intersections are the chief suspects for such ultrafast branching processes. We show for two typical examples, the neutral diphenylmethylchloride (Ph2CH-Cl) and the charged diphenylmethyltriphenylphosphonium ions ([Formula: see text]) that the role of the conical intersections depends not only on the molecular features but also on the interplay with the environment. It turns out to differ significantly for both precursors. Our analysis is based on quantum chemical and quantum dynamical calculations. For comparison, we use ultrafast transient absorption measurements. In case of Ph2CH-Cl, we can directly connect the observed signals to two early three-state and two-state conical intersections, both close to the Franck-Condon region. In case of the [Formula: see text], dynamic solvent effects are needed to activate a two-state conical intersection at larger distances along the reaction coordinate.

6.
J Phys Chem Lett ; 5(20): 3480-5, 2014 Oct 16.
Article in English | MEDLINE | ID: mdl-26278596

ABSTRACT

In every day chemistry, solvents are used to influence the outcome of chemical synthesis. Electrostatic effects stabilize polar configurations during the reaction and in addition dynamic solvent effects can emerge. How the dynamic effects intervene on the ultrafast time scale is in the focus of this theoretical study. We selected the photoinduced bond cleavage of Ph2CH-PPh3(+) for which the electrostatic interactions are negligible. Elaborate ultrafast pump-probe studies already exist and serve as a reference. We compared quantum dynamical simulations with and without environment and noticed the necessity to model the influence of the solvent cage on the reactive motions of the solute. The frictional force induced by the dynamic viscosity of the solvent is implemented in the quantum mechanical formalism with a newly developed approach called the dynamic continuum ansatz. Only when the environment is included are the experimentally observed products reproduced on the subpicosecond time scale.

SELECTION OF CITATIONS
SEARCH DETAIL
...