Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Nat Commun ; 15(1): 3741, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702301

ABSTRACT

Targeted therapy is effective in many tumor types including lung cancer, the leading cause of cancer mortality. Paradigm defining examples are targeted therapies directed against non-small cell lung cancer (NSCLC) subtypes with oncogenic alterations in EGFR, ALK and KRAS. The success of targeted therapy is limited by drug-tolerant persister cells (DTPs) which withstand and adapt to treatment and comprise the residual disease state that is typical during treatment with clinical targeted therapies. Here, we integrate studies in patient-derived and immunocompetent lung cancer models and clinical specimens obtained from patients on targeted therapy to uncover a focal adhesion kinase (FAK)-YAP signaling axis that promotes residual disease during oncogenic EGFR-, ALK-, and KRAS-targeted therapies. FAK-YAP signaling inhibition combined with the primary targeted therapy suppressed residual drug-tolerant cells and enhanced tumor responses. This study unveils a FAK-YAP signaling module that promotes residual disease in lung cancer and mechanism-based therapeutic strategies to improve tumor response.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , Lung Neoplasms , Signal Transduction , Transcription Factors , YAP-Signaling Proteins , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Signal Transduction/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , YAP-Signaling Proteins/metabolism , Cell Line, Tumor , Animals , Drug Resistance, Neoplasm/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Neoplasm, Residual , Mice , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , ErbB Receptors/metabolism , ErbB Receptors/genetics , Anaplastic Lymphoma Kinase/metabolism , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Xenograft Model Antitumor Assays
2.
J Immunol ; 211(6): 917-922, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37566514

ABSTRACT

Ras guanine nucleotide-releasing protein 1 (Rasgrp1) is a Ras guanine nucleotide exchange factor that participates in the activation of the Ras-ERK signaling pathway in developing T cells and is required for efficient thymic T cell positive selection. However, the role of Rasgrp1 in mature peripheral T cells has not been definitively addressed, in part because peripheral T cells from constitutive Rasgrp1-deficient mice show an abnormal activated phenotype. In this study, we generated an inducible Rasgrp1-deficient mouse model to allow acute disruption of Rasgrp1 in peripheral CD4+ T cells in the context of normal T cell development. TCR/CD28-mediated activation of Ras-ERK signaling was blocked in Rasgrp1-deficient peripheral CD4+ T cells. Furthermore, Rasgrp1-deficient CD4+ T cells were unable to synthesize IL-2 and the high-affinity IL-2R and were unable to proliferate in response to TCR/CD28 stimulation. These findings highlight an essential function for Rasgrp1 for TCR/CD28-induced Ras-ERK activation in peripheral CD4+ T cells.


Subject(s)
CD28 Antigens , CD4-Positive T-Lymphocytes , Mice , Animals , CD4-Positive T-Lymphocytes/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Mice, Knockout , Receptors, Antigen, T-Cell/metabolism
3.
Cancer Cell ; 41(5): 853-870.e13, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37084735

ABSTRACT

We uncover a tumor-suppressive process in urothelium called transcriptional-translational conflict caused by deregulation of the central chromatin remodeling component ARID1A. Loss of Arid1a triggers an increase in a nexus of pro-proliferation transcripts, but a simultaneous inhibition of the eukaryotic elongation factor 2 (eEF2), which results in tumor suppression. Resolution of this conflict through enhancing translation elongation speed enables the efficient and precise synthesis of a network of poised mRNAs resulting in uncontrolled proliferation, clonogenic growth, and bladder cancer progression. We observe a similar phenomenon in patients with ARID1A-low tumors, which also exhibit increased translation elongation activity through eEF2. These findings have important clinical implications because ARID1A-deficient, but not ARID1A-proficient, tumors are sensitive to pharmacologic inhibition of protein synthesis. These discoveries reveal an oncogenic stress created by transcriptional-translational conflict and provide a unified gene expression model that unveils the importance of the crosstalk between transcription and translation in promoting cancer.


Subject(s)
Chromatin , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics
4.
Stem Cell Reports ; 18(3): 636-653, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36827975

ABSTRACT

Ancestral SARS coronavirus-2 (SARS-CoV-2) and variants of concern (VOC) caused a global pandemic with a spectrum of disease severity. The mechanistic explaining variations related to airway epithelium are relatively understudied. Here, we biobanked airway organoids (AO) by preserving stem cell function. We optimized viral infection with H1N1/PR8 and comprehensively characterized epithelial responses to SARS-CoV-2 infection in phenotypically stable AO from 20 different subjects. We discovered Tetraspanin-8 (TSPAN8) as a facilitator of SARS-CoV-2 infection. TSPAN8 facilitates SARS-CoV-2 infection rates independently of ACE2-Spike interaction. In head-to-head comparisons with Ancestral SARS-CoV-2, Delta and Omicron VOC displayed lower overall infection rates of AO but triggered changes in epithelial response. All variants shared highest tropism for ciliated and goblet cells. TSPAN8-blocking antibodies diminish SARS-CoV-2 infection and may spur novel avenues for COVID-19 therapy.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Humans , SARS-CoV-2 , Organoids , Tetraspanins/genetics
5.
bioRxiv ; 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38187679

ABSTRACT

Normal hematopoiesis requires constant prolific production of different blood cell lineages by multipotent hematopoietic stem cells (HSC). Stem- and progenitor- cells need to balance dormancy with proliferation. How genetic alterations impact frequency, lineage potential, and metabolism of HSC is largely unknown. Here, we compared induced expression of KRAS G12D or RasGRP1 to normal hematopoiesis. At low-resolution, both Ras pathway lesions result in skewing towards myeloid lineages. Single-cell resolution CyTOF proteomics unmasked an expansion of HSC- and progenitor- compartments for RasGRP1, contrasted by a depletion for KRAS G12D . SCENITH™ quantitates protein synthesis with single-cell precision and corroborated that immature cells display low metabolic SCENITH™ rates. Both RasGRP1 and KRAS G12D elevated mean SCENITH™ signals in immature cells. However, RasGRP1-overexpressing stem cells retain a metabolically quiescent cell-fraction, whereas this fraction diminishes for KRAS G12D . Our temporal single cell proteomics and metabolomics datasets provide a resource of mechanistic insights into altered hematopoiesis at single cell resolution.

6.
bioRxiv ; 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35982664

ABSTRACT

As SARS-CoV-2 continues to spread worldwide, tractable primary airway cell models that accurately recapitulate the cell-intrinsic response to arising viral variants are needed. Here we describe an adult stem cell-derived human airway organoid model overexpressing the ACE2 receptor that supports robust viral replication while maintaining 3D architecture and cellular diversity of the airway epithelium. ACE2-OE organoids were infected with SARS-CoV-2 variants and subjected to single-cell RNA-sequencing. NF-κB inhibitor alpha was consistently upregulated in infected epithelial cells, and its mRNA expression positively correlated with infection levels. Confocal microscopy showed more IκBα expression in infected than bystander cells, but found concurrent nuclear translocation of NF-κB that IκBα usually prevents. Overexpressing a nondegradable IκBα mutant reduced NF-κB translocation and increased viral infection. These data demonstrate the functionality of ACE2-OE organoids in SARS-CoV-2 research and identify an incomplete NF-κB feedback loop as a rheostat of viral infection that may promote inflammation and severe disease.

7.
Res Sq ; 2022 May 17.
Article in English | MEDLINE | ID: mdl-35611333

ABSTRACT

In the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic1, considerable focus has been placed on a model of viral entry into host epithelial populations, with a separate focus upon the responding immune system dysfunction that exacerbates or causes disease. We developed a precision-cut lung slice model2,3 to investigate very early host-viral pathogenesis and found that SARS-CoV-2 had a rapid and specific tropism for myeloid populations in the human lung. Infection of alveolar macrophages was partially dependent upon their expression of ACE2, and the infections were productive for amplifying virus, both findings which were in contrast with their neutralization of another pandemic virus, Influenza A virus (IAV). Compared to IAV, SARS-CoV-2 was extremely poor at inducing interferon-stimulated genes in infected myeloid cells, providing a window of opportunity for modest titers to amplify within these cells. Endotracheal aspirate samples from humans with the acute respiratory distress syndrome (ARDS) from COVID-19 confirmed the lung slice findings, revealing a persistent myeloid depot. In the early phase of SARS-CoV-2 infection, myeloid cells may provide a safe harbor for the virus with minimal immune stimulatory cues being generated, resulting in effective viral colonization and quenching of the immune system.

8.
bioRxiv ; 2022 May 11.
Article in English | MEDLINE | ID: mdl-35592107

ABSTRACT

In the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, considerable focus has been placed on a model of viral entry into host epithelial populations, with a separate focus upon the responding immune system dysfunction that exacerbates or causes disease. We developed a precision-cut lung slice model to investigate very early host-viral pathogenesis and found that SARS-CoV-2 had a rapid and specific tropism for myeloid populations in the human lung. Infection of alveolar macrophages was partially dependent upon their expression of ACE2, and the infections were productive for amplifying virus, both findings which were in contrast with their neutralization of another pandemic virus, Influenza A virus (IAV). Compared to IAV, SARS-CoV-2 was extremely poor at inducing interferon-stimulated genes in infected myeloid cells, providing a window of opportunity for modest titers to amplify within these cells. Endotracheal aspirate samples from humans with the acute respiratory distress syndrome (ARDS) from COVID-19 confirmed the lung slice findings, revealing a persistent myeloid depot. In the early phase of SARS-CoV-2 infection, myeloid cells may provide a safe harbor for the virus with minimal immune stimulatory cues being generated, resulting in effective viral colonization and quenching of the immune system.

9.
Cell ; 185(4): 729-745.e20, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35063085

ABSTRACT

Brain metastasis (BrM) is the most common form of brain cancer, characterized by neurologic disability and an abysmal prognosis. Unfortunately, our understanding of the biology underlying human BrMs remains rudimentary. Here, we present an integrative analysis of >100,000 malignant and non-malignant cells from 15 human parenchymal BrMs, generated by single-cell transcriptomics, mass cytometry, and complemented with mouse model- and in silico approaches. We interrogated the composition of BrM niches, molecularly defined the blood-tumor interface, and revealed stromal immunosuppressive states enriched with infiltrated T cells and macrophages. Specific single-cell interrogation of metastatic tumor cells provides a framework of 8 functional cell programs that coexist or anticorrelate. Collectively, these programs delineate two functional BrM archetypes, one proliferative and the other inflammatory, that are evidently shaped through tumor-immune interactions. Our resource provides a foundation to understand the molecular basis of BrM in patients with tumor cell-intrinsic and host environmental traits.


Subject(s)
Brain Neoplasms/pathology , Brain Neoplasms/secondary , Adult , Aged , Animals , Biomarkers, Tumor/metabolism , Brain Neoplasms/blood , Brain Neoplasms/immunology , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Female , Genetic Variation , Humans , Immune Evasion , Lymphocyte Activation/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Models, Biological , Myeloid Cells/pathology , Principal Component Analysis , RNA-Seq , Single-Cell Analysis , T-Lymphocytes/immunology
11.
Small GTPases ; 13(1): 7-13, 2022 01.
Article in English | MEDLINE | ID: mdl-33517841

ABSTRACT

T-cell acute lymphoblastic leukaemia (T-ALL) is a bone marrow (BM) malignancy affecting children and adults. Typically treated with chemotherapy, leukaemia remains a major death cause in people under 20 years old. Understanding molecularly altered pathways in T-ALL may lead to new therapeutic avenues in the future. Ras pathway dysregulation is common in T-ALL. We have shown elevated expression levels of the Ras guanine nucleotide exchange factor RasGRP1 in T-ALL patients, which results in constant production of active Ras (RasGTP). When leukaemia cell lines are exposed to cytokines, RasGTP levels further increase in a RasGRP1-dependent manner. How overexpressed RasGRP1 may impact primary BM cells has remained unknown. We recently published a new RoLoRiG mouse model that allows for pIpC-induced overexpression of RasGRP1 in haematopoietic cells, which can be traced with an ires-EGFP cassette. This novel model revealed that RasGRP1 overexpression bestows a fitness advantage to haematopoietic stem cells (HSCs) over wild-type cells. Intriguingly, this increased fitness only manifests in native Hematopoiesis, and not in BM transplantation (BMT) assays. In this commentary, we summarize key features of our RoLoRiG model, elaborate on BM niche importance, and discuss differences between native Hematopoiesis and BMT in the context of stem cell metabolism.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Mice , Animals , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Disease Models, Animal , Cytokines
13.
bioRxiv ; 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34100012

ABSTRACT

SARS coronavirus-2 (SARS-CoV-2) is causing a global pandemic with large variation in COVID-19 disease spectrum. SARS-CoV-2 infection requires host receptor ACE2 on lung epithelium, but epithelial underpinnings of variation are largely unknown. We capitalized on comprehensive organoid assays to report remarkable variation in SARS-CoV-2 infection rates of lung organoids from different subjects. Tropism is highest for TUBA- and MUC5AC-positive organoid cells, but levels of TUBA-, MUC5A-, or ACE2- positive cells do not predict infection rate. We identify surface molecule Tetraspanin 8 (TSPAN8) as novel mediator of SARS-CoV-2 infection, which is not downregulated by this specific virus. TSPAN8 levels, prior to infection, strongly correlate with infection rate and TSPAN8-blocking antibodies diminish SARS-CoV-2 infection. We propose TSPAN8 as novel functional biomarker and potential therapeutic target for COVID-19.

14.
Methods Mol Biol ; 2262: 19-43, 2021.
Article in English | MEDLINE | ID: mdl-33977469

ABSTRACT

Ras research has experienced a considerable boost in recent years, not least prompted by the Ras initiative launched by the NCI in 2013 ( https://www.cancer.gov/research/key-initiatives/ras ), accompanied and conditioned by a strongly reinvigorated determination within the Ras community to develop therapeutics attacking directly the Ras oncoproteins. As a member of the small G-protein superfamily, function and transforming activity of Ras all revolve about its GDP/GTP loading status. For one thing, the extent of GTP loading will determine the proportion of active Ras in the cell, with implications for intensity and quality of downstream signaling. But also the rate of nucleotide exchange, i.e., the Ras-GDP/GTP cycling rate, can have a major impact on Ras function, as illustrated perhaps most impressively by newly discovered fast-cycling oncogenic mutants of the Ras-related GTPase Rac1. Thus, while the last years have witnessed memorable new findings and technical developments in the Ras field, leading to an improved insight into many aspects of Ras biology, they have not jolted at the basics, but rather deepened our view of the fundamental regulatory principles of Ras activity control. In this brief review, we revisit the role and mechanisms of Ras nucleotide loading and its implications for cancer in the light of recent findings.


Subject(s)
Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Mutation , Neoplasms/pathology , ras Proteins/genetics , Humans , Neoplasms/genetics
15.
Biochem J ; 478(6): 1303-1307, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33755101

ABSTRACT

Signaling pathways play critical roles in regulating the activation of T cells. Recognition of foreign peptide presented by MHC to the T cell receptor (TCR) triggers a signaling cascade of proximal kinases and adapter molecules that lead to the activation of Effector kinase pathways. These effector kinase pathways play pivotal roles in T cell activation, differentiation, and proliferation. RNA sequencing-based methods have provided insights into the gene expression programs that support the above-mentioned cell biological responses. The proteome is often overlooked. A recent study by Damasio et al. [Biochem. J. (2021) 478, 79-98. doi:10.1042/BCJ20200661] focuses on characterizing the effect of extracellular signal-regulated kinase (ERK) on the remodeling of the proteome of activated CD8+ T cells using Mass spectrometric analysis. Surprisingly, the Effector kinase ERK pathway is responsible for only a select proportion of the proteome that restructures during T cell activation. The primary targets of ERK signaling are transcription factors, cytokines, and cytokine receptors. In this commentary, we discuss the recent findings by Damasio et al. [Biochem. J. (2021) 478, 79-98. doi:10.1042/BCJ20200661] in the context of different Effector kinase pathways in activated T cells.


Subject(s)
Receptors, Antigen, T-Cell , T-Lymphocytes , Cytokines , Extracellular Signal-Regulated MAP Kinases/metabolism , Signal Transduction , T-Lymphocytes/metabolism
16.
Cancers (Basel) ; 13(4)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33572297

ABSTRACT

3D models of cancer have the potential to improve basic, translational, and clinical studies. Patient-derived xenografts, spheroids, and organoids are broad categories of 3D models of cancer, and to date, these 3D models of cancer have been established for a variety of cancer types. In lung cancer, for example, 3D models offer a promising new avenue to gain novel insights into lung tumor biology and improve outcomes for patients afflicted with the number one cancer killer worldwide. However, the adoption and utility of these 3D models of cancer vary, and demonstrating the fidelity of these models is a critical first step before seeking meaningful applications. Here, we review use cases of current 3D lung cancer models and bioinformatic approaches to assessing model fidelity. Bioinformatics approaches play a key role in both validating 3D lung cancer models and high dimensional functional analyses to support downstream applications.

17.
Blood ; 137(23): 3259-3271, 2021 06 10.
Article in English | MEDLINE | ID: mdl-33512434

ABSTRACT

Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) is an aggressive subtype of T-cell ALL. Although genetic mutations hyperactivating cytokine receptor/Ras signaling are prevalent in ETP-ALL, it remains unknown how activated Ras signaling contributes to ETP-ALL. Here, we find that in addition to the frequent oncogenic RAS mutations, wild-type (WT) KRAS transcript level was significantly downregulated in human ETP-ALL cells. Similarly, loss of WT Kras in NrasQ61R/+ mice promoted hyperactivation of extracellular signal-regulated kinase (ERK) signaling, thymocyte hyperproliferation, and expansion of the ETP compartment. Kras-/-; NrasQ61R/+ mice developed early onset of T-cell malignancy that recapitulates many biological and molecular features of human ETP-ALL. Mechanistically, RNA-sequencing analysis and quantitative proteomics study identified that Rasgrp1, a Ras guanine nucleotide exchange factor, was greatly downregulated in mouse and human ETP-ALL. Unexpectedly, hyperactivated Nras/ERK signaling suppressed Rasgrp1 expression and reduced Rasgrp1 level led to increased ERK signaling, thereby establishing a positive feedback loop to augment Nras/ERK signaling and promote cell proliferation. Corroborating our cell line data, Rasgrp1 haploinsufficiency induced Rasgrp1 downregulation and increased phosphorylated ERK level and ETP expansion in NrasQ61R/+ mice. Our study identifies Rasgrp1 as a negative regulator of Ras/ERK signaling in oncogenic Nras-driven ETP-like leukemia.


Subject(s)
Down-Regulation , Gene Expression Regulation, Leukemic , Guanine Nucleotide Exchange Factors , Monomeric GTP-Binding Proteins , Mutation, Missense , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Proto-Oncogene Proteins p21(ras)/deficiency , Amino Acid Substitution , Animals , Cell Proliferation/genetics , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Humans , MAP Kinase Signaling System/genetics , Mice , Mice, Knockout , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Proto-Oncogene Proteins p21(ras)/metabolism
18.
Eur J Immunol ; 51(2): 471-482, 2021 02.
Article in English | MEDLINE | ID: mdl-33065764

ABSTRACT

RasGRP1 is a Ras guanine nucleotide exchange factor, and an essential regulator of lymphocyte receptor signaling. In mice, Rasgrp1 deletion results in defective T lymphocyte development. RASGRP1-deficient patients suffer from immune deficiency, and the RASGRP1 gene has been linked to autoimmunity. However, how RasGRP1 levels are regulated, and if RasGRP1 dosage alterations contribute to autoimmunity remains unknown. We demonstrate that diminished Rasgrp1 expression caused defective T lymphocyte selection in C57BL/6 mice, and that the severity of inflammatory disease inversely correlates with Rasgrp1 expression levels. In patients with autoimmunity, active inflammation correlated with decreased RASGRP1 levels in CD4+ T cells. By analyzing H3K27 acetylation profiles in human T cells, we identified a RASGRP1 enhancer that harbors autoimmunity-associated SNPs. CRISPR-Cas9 disruption of this enhancer caused lower RasGRP1 expression, and decreased binding of RUNX1 and CBFB transcription factors. Analyzing patients with autoimmunity, we detected reduced RUNX1 expression in CD4+ T cells. Lastly, we mechanistically link RUNX1 to transcriptional regulation of RASGRP1 to reveal a key circuit regulating RasGRP1 expression, which is vital to prevent inflammatory disease.


Subject(s)
Autoimmunity/genetics , Core Binding Factor Alpha 2 Subunit/genetics , DNA-Binding Proteins/genetics , Guanine Nucleotide Exchange Factors/genetics , Transcription, Genetic/genetics , Animals , Autoimmunity/immunology , CD4-Positive T-Lymphocytes/immunology , CRISPR-Cas Systems/genetics , CRISPR-Cas Systems/immunology , Core Binding Factor Alpha 2 Subunit/immunology , DNA-Binding Proteins/immunology , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Guanine Nucleotide Exchange Factors/immunology , Histones/genetics , Histones/immunology , Humans , Inflammation/genetics , Inflammation/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Transcription, Genetic/immunology
19.
STAR Protoc ; 1(2): 100067, 2020 09 18.
Article in English | MEDLINE | ID: mdl-33111105

ABSTRACT

Stimulation of naive T lymphocytes via the T cell receptor (TCR) induces distinct phosphorylation patterns that can be used to explore various signaling pathways within the cell. This protocol can be used to characterize different perturbations to the signaling pathways and the variations in time of stimulation. Here, we provide a method of barcoding and consolidating a maximum of 24 different sample conditions using two florescent dyes. This single sample for phospho-staining and flow cytometry saves time and reagents. For complete details on the use and execution of this protocol, please refer to Krutzik and Nolan (2006), Krutzik et al. (2012), Vercoulen et al. (2017), Ksionda et al. (2018), and Myers et al. (2019).


Subject(s)
Flow Cytometry/methods , Fluorescent Dyes , Molecular Probe Techniques , T-Lymphocytes , Animals , Cells, Cultured , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Mice , Phosphorylation , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , T-Lymphocytes/chemistry , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Time Factors
20.
STAR Protoc ; 1(1)2020 06 19.
Article in English | MEDLINE | ID: mdl-32984851

ABSTRACT

Here, we provide a detailed protocol for synthetic lethality screens in a Jurkat T cell leukemia line using cell death as the readout measuring the combinatorial effect of a pan-PI3K inhibitor (GDC0941) with specific gene depletion by shRNA. We describe the use of an ultra-complex shRNA library, coverage considerations, time frames, protocol details, and bottlenecks with images to facilitate similar approaches. We discuss how this protocol resource can be readily adapted by investigators. For complete details on the use and execution of this protocol, please refer to (Mues et al., 2019).


Subject(s)
RNA, Small Interfering , Toxicity Tests/methods , Gene Library , Humans , Indazoles , Jurkat Cells , Phosphoinositide-3 Kinase Inhibitors , Sulfonamides
SELECTION OF CITATIONS
SEARCH DETAIL
...