Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Nutr ; 2: 5, 2015.
Article in English | MEDLINE | ID: mdl-25988134

ABSTRACT

The consumption of fructose has increased tremendously over the last five decades, which is to a large extent due to the development of high-fructose corn syrup (HFCS), a commercial sugar additive that contains high amounts of free fructose. HFCS is often added to processed food and beverages partly because it is a powerful sweetener but even more so because the production is cheap. Although fructose in combination with fiber, vitamins, and minerals, as present in fruits, is a healthy source of energy, isolated fructose, in processed food products has been associated with several health disorders such as insulin resistance and hypertension. Apart from its metabolic consequences, a growing body of literature suggests that free fructose can also affect neuronal systems. High-fructose intake may on the one hand affect central appetite regulation by altering specific components of the endocannabinoid system. On the other hand, it appears to impact on cognitive function by affecting phosphorylation levels of insulin receptor, synapsin 1, and synaptophysin. The present report reviews the recent evidence showing a negative effect of free fructose consumption on central appetite control, as well as cognitive function.

2.
J Physiol ; 590(17): 4321-33, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22711954

ABSTRACT

Although hunger and satiety are mainly centrally regulated, there is convincing evidence that also gastrointestinal motor activity and hormone fluctuations significantly contribute to appetite signalling. In this study, we investigated how motility and enteric nerve activity are set by fasting and feeding. By means of video-imaging, we tested whether peristaltic activity differs in ex vivo preparations from fasted and re-fed guinea pigs. Ca(2+) imaging was used to investigate whether the feeding state directly alters neuronal activity, either occurring spontaneously or evoked by (an)orexigenic signalling molecules. We found that pressure-induced (2 cmH(2)O) peristaltic activity occurs at a higher frequency in ileal segments from re-fed animals (re-fed versus fasted, 6.12 ± 0.22 vs. 4.84 ± 0.52 waves min(-1), P = 0.028), even in vitro hours after death. Myenteric neuronal responses were tuned to the feeding status, since neurons in tissues from re-fed animals remained hyper-responsive to high K(+)-evoked depolarization (P < 0.001) and anorexigenic molecules (P < 0.001), while being less responsive to orexigenic ghrelin (P = 0.013). This illustrates that the feeding status remains 'imprinted' ex vivo. We were able to reproduce this feeding state-related memory in vitro and found humoral feeding state-related factors to be implicated. Although the molecular link with hyperactivity is not entirely elucidated yet, glucose-dependent pathways are clearly involved in tuning neuronal excitability. We conclude that a bistable memory system that tunes neuronal responses to fasting and re-feeding is present in the enteric nervous system, increasing responses to depolarization and anorexigenic molecules in the re-fed state, while decreasing responses to orexigenic ghrelin. Unlike the hypothalamus, where specific cell populations sensitive to either orexigenic or anorexigenic molecules exist, the enteric feeding state-related memory system is present at the functional level of receptor signalling rather than confined to specific neuron subtypes.


Subject(s)
Enteric Nervous System/physiology , Hunger/physiology , Satiation/physiology , Animals , Calcium/metabolism , Calcium Signaling , Enteric Nervous System/drug effects , Fasting/physiology , Gastrointestinal Motility/physiology , Ghrelin/pharmacology , Ghrelin/physiology , Glucose/metabolism , Guinea Pigs , Male , Models, Animal , Peristalsis/physiology , Potassium/metabolism , Potassium/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor, Cholecystokinin A/genetics , Receptor, Cholecystokinin A/metabolism , Receptors, Ghrelin/genetics , Receptors, Ghrelin/metabolism , Receptors, Serotonin, 5-HT3/genetics , Receptors, Serotonin, 5-HT3/metabolism , Serotonin/pharmacology , Signal Transduction , Sincalide/pharmacology , Video Recording
SELECTION OF CITATIONS
SEARCH DETAIL
...