Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(25): 27415-27427, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38947777

ABSTRACT

We investigated the melt-spinning potential of a poly(3-hydroxybutyrate)/poly(3-hydroxybutyrate-co-4-hydroxybutyrate) blend using a piston spinning machine with two different spinneret diameters (0.2 and 0.5 mm). Results from the differential scanning calorimetry, dynamic mechanical thermal analysis, and tensile testing showed distinct filament properties depending on the monofilaments' cross-sectional area. Finer filaments possessed different melting behaviors compared to the coarser filaments and the neat polymer, indicating the formation of a different type of polymer crystal. Additionally, the mechanical properties of the finer filament (tensile strength: 21.5 MPa and elongation at break: 341%) differed markedly from the coarser filament (tensile strength: 11.7 MPa, elongation at break: 12.3%). The hydrolytic stability of the filaments was evaluated for 7 weeks in a phosphate-buffered saline solution and showed a considerably reduced elongation at break of the thinner filaments. Overall, the results indicate considerable potential for further filament improvements to facilitate textile processing.

2.
Materials (Basel) ; 17(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38592008

ABSTRACT

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a biobased and biodegradable polymer. This polymer is considered promising, but it is also rather expensive. The objective of this study was to compound PHBV with three different organic fillers considered waste: human hair waste (HHW), sawdust (SD) and chitin from shrimp shells. Thus, the cost of the biopolymer is reduced, and, at the same time, waste materials are valorised into something useful. The composites prepared were characterised by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), tensile strength and scanning electron micrograph (SEM). Tests showed that chitin and HHW did not have a reinforcing effect on tensile strength while the SD increased the tensile strength at break to a certain degree. The biodegradation of the different composites was evaluated by a soil burial test for five months. The gravimetric test showed that neat PHBV was moderately degraded (about 5% weight loss) while reinforcing the polymer with organic waste clearly improved the biodegradation. The strongest biodegradation was achieved when the biopolymer was compounded with HHW (35% weight loss). The strong biodegradation of HHW was further demonstrated by characterisation by Fourier-transform infrared spectroscopy (FTIR) and solid-state nuclear magnetic resonance (NMR). Characterisation by SEM showed that the surfaces of the biodegraded samples were eroded.

3.
Membranes (Basel) ; 13(6)2023 May 31.
Article in English | MEDLINE | ID: mdl-37367773

ABSTRACT

Volatile fatty acids (VFAs) appear to be an economical carbon feedstock for the cost-effective production of polyhydroxyalkanoates (PHAs). The use of VFAs, however, could impose a drawback of substrate inhibition at high concentrations, resulting in low microbial PHA productivity in batch cultivations. In this regard, retaining high cell density using immersed membrane bioreactor (iMBR) in a (semi-) continuous process could enhance production yields. In this study, an iMBR with a flat-sheet membrane was applied for semi-continuous cultivation and recovery of Cupriavidus necator in a bench-scale bioreactor using VFAs as the sole carbon source. The cultivation was prolonged up to 128 h under an interval feed of 5 g/L VFAs at a dilution rate of 0.15 (d-1), yielding a maximum biomass and PHA production of 6.6 and 2.8 g/L, respectively. Potato liquor and apple pomace-based VFAs with a total concentration of 8.8 g/L were also successfully used in the iMBR, rendering the highest PHA content of 1.3 g/L after 128 h of cultivation. The PHAs obtained from both synthetic and real VFA effluents were affirmed to be poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with a crystallinity degree of 23.8 and 9.6%, respectively. The application of iMBR could open an opportunity for semi-continuous production of PHA, increasing the feasibility of upscaling PHA production using waste-based VFAs.

4.
Int J Biol Macromol ; 209(Pt A): 618-630, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35427640

ABSTRACT

Here, cell wall of a zygomycete fungus, Rhizopus delemar, grown on bread waste was wet spun into monofilaments. Using the whole cell wall material omits the common chitosan isolation and purification steps and leads to higher material utilization. The fungal cell wall contained 36.9% and 19.7% chitosan and chitin, respectively. Solid state NMR of the fungal cell wall material confirmed the presence of chitosan, chitin, and other carbohydrates. Hydrogels were prepared by ultrafine grinding of the cell wall, followed by addition of lactic acid to protonate the amino groups of chitosan, and subsequently wet spun into monofilaments. The monofilament inhibited the growth of Bacillus megaterium (Gram+ bacterium) and Escherichia coli (Gram- bacterium) significantly (92.2% and 99.7% respectively). Cytotoxicity was evaluated using an in vitro assay with human dermal fibroblasts, indicating no toxic inducement from exposure of the monofilaments. The antimicrobial and biocompatible fungal monofilaments, open new avenues for sustainable biomedical textiles from abundant food waste.


Subject(s)
Chitosan , Refuse Disposal , Anti-Bacterial Agents/pharmacology , Chitin/chemistry , Chitosan/chemistry , Escherichia coli , Food , Humans
5.
Anal Chem ; 88(21): 10592-10598, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27700066

ABSTRACT

Direct infusion atmospheric pressure chemical ionization mass spectrometry (APCI-MS) was compared to field ionization mass spectrometry (FI-MS) for the determination of hydrocarbon class distributions in lubricant base oils. When positive ion mode APCI with oxygen as the ion source gas was employed to ionize saturated hydrocarbon model compounds (M) in hexane, only stable [M - H]+ ions were produced. Ion-molecule reaction studies performed in a linear quadrupole ion trap suggested that fragment ions of ionized hexane can ionize saturated hydrocarbons via hydride abstraction with minimal fragmentation. Hence, APCI-MS shows potential as an alternative of FI-MS in lubricant base oil analysis. Indeed, the APCI-MS method gave similar average molecular weights and hydrocarbon class distributions as FI-MS for three lubricant base oils. However, the reproducibility of APCI-MS method was found to be substantially better than for FI-MS. The paraffinic content determined using the APCI-MS and FI-MS methods for the base oils was similar. The average number of carbons in paraffinic chains followed the same increasing trend from low viscosity to high viscosity base oils for the two methods.

6.
Chem Commun (Camb) ; (16): 2032-3, 2003 Aug 21.
Article in English | MEDLINE | ID: mdl-12934897

ABSTRACT

Besides the well-known reaction between the ethoxy groups of the silane end of the gamma-aminopropyltriethoxysilane (APTS) molecule and the silanols of silica, the amino ends of APTS molecules were observed to react in the gas phase with ethoxy groups of other APTS molecules and silanols of silica at elevated temperatures on the silica surface, dehydroxylated at 600 degrees C, forming Si-N linkages, as established by 29Si CP/MAS NMR.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods , Silanes/chemistry , Silicon Dioxide/chemistry , Adsorption , Gases/chemistry , Models, Chemical , Propylamines , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...