Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 373: 128714, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36754238

ABSTRACT

Anammox-based nitrogen removal and enhanced biological phosphorus removal (EBPR) are increasingly applied for nutrient removal from wastewater, but are typically operated in separate reactors. Here, a novel process for integrated partial nitritation/anammox (PN/A) and EBPR in a single reactor employing integrated fixed film activated sludge was tested. The reactor was fed with mainstream municipal wastewater (5.4 ± 1.3 g COD/g N) at 20 °C for 243 days. Robust ammonium, total inorganic nitrogen, and orthophosphate removal efficiencies of 94 ± 4 %, 87 ± 7 % and 92 ± 7 % were achieved. Nitrite-oxidizing organisms suppression and ammonia-oxidizing organisms retention were achieved via solids retention time control, intermittent aeration, and suspended versus attached biomass population segregation. The contribution of anammox to nitrogen removal increased from 24 % to 74 %. In parallel, a substantial enrichment of Tetrasphaera polyphosphate accumulating organisms was observed. This work demonstrates a novel intensified bioprocess coupling PN/A and EBPR in the same reactor for efficient nutrient removal from wastewater.


Subject(s)
Ammonium Compounds , Wastewater , Phosphorus , Anaerobic Ammonia Oxidation , Oxidation-Reduction , Sewage , Bioreactors , Nitrogen , Denitrification
2.
Chemosphere ; 318: 137955, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36702412

ABSTRACT

One of the bottlenecks to applying anaerobic ammonium oxidation (Anammox) is the long start-up time, especially under mainstream conditions. This study proposed a strategy for fast anammox biofilm formation under mainstream conditions. By first cultivating an aerobic heterotrophic biofilm, and then transferring to anoxic conditions, a pre-cultivated heterotrophic biofilm can be formed in 12 days. The pre-cultivated heterotrophic biofilm then functions as a "glue" to accelerate anammox bacteria adhesion and biofilm formation. Secondary settled effluent with externally added 15-30 mg-N·L-1 ammonium and nitrite was applied as reactor influent. With a single inoculation of suspended growth anammox-laden biomass and no bioaugmentation, an anammox-enriched biofilm formed after 5 months of operation under uncontrolled temperature of 15-20 °C. Both the nitrogen removal rate and specific anammox activity exponentially increased over the course of study, corresponding to an estimated anammox doubling time of 10.8 days. The biofilm thickness on primed carriers was 2-3 times higher than on the non-primed carriers over the first 5 months of operation, and the hszA gene copy number in primed biofilms revealed was consistently 1 to 2 times higher than the non-primed carrier biofilm, indicating that biofil m carrier priming via selection for a pre-cultivated heterotrophic biofilm base can effectively improve the anammox enrichment rate at early stages of reactor operation. Time, rather than the type of biofilm (primed versus non-primed), had a stronger influence on microbial community structure over the full 230 days of reactor operation. Candidatus Brocadia was the only detected anammox bacteria genus. Overall, pre-cultivation of heterotrophs on biofilm carriers provides a simple route to accelerate anammox-enriched biofilm formation under mainstream conditions.


Subject(s)
Ammonium Compounds , Anaerobic Ammonia Oxidation , Bacterial Adhesion , Anaerobiosis , Bioreactors/microbiology , Nitrogen/chemistry , Biofilms , Oxidation-Reduction , Sewage/microbiology , Denitrification
3.
Water Sci Technol ; 82(8): 1614-1627, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33107855

ABSTRACT

Reducing the solids retention time (SRT) of the enhanced biological phosphorus removal (EBPR) process can increase organic carbon diversion to the sidestream for energy recovery, thereby realizing some of the benefits of the high rate activated sludge (HRAS) process. Determining the washout (i.e. minimum) SRT of polyphosphate accumulating organisms (PAOs), therefore, allows for simultaneous phosphorus and carbon diversion for energy recovery from EBPR systems. However, few studies have investigated the washout SRT of PAOs in real wastewater, and little is known of the diversity of PAOs in high rate EBPR systems. Here we demonstrate efficient phosphorus removal (83% orthophosphate removal) in a high rate EBPR sequencing batch reactor fed real primary effluent and operated at 20 °C. Stable operation was achieved at a total SRT of 1.8 ± 0.2 days and hydraulic retention time of 3.7-4.8 hours. 16S rRNA gene sequencing data demonstrated that Accumulibacter were the dominant PAO throughout the study, with a washout aerobic SRT between 0.8 and 1.4 days. qPCR targeting the polyphosphate kinase gene revealed that Accumulibacter clades IIA, IIB and IID dominated the PAO community at low SRT operation, while clade IA was washed out at the lowest SRT values.


Subject(s)
Bioreactors , Phosphorus , RNA, Ribosomal, 16S/genetics , Sewage , Wastewater
4.
Water Res ; 157: 396-405, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30974288

ABSTRACT

Recent findings show that a subset of bacteria affiliated with Nitrospira, a genus known for its importance in nitrite oxidation for biological nutrient removal applications, are capable of complete ammonia oxidation (comammox) to nitrate. Early reports suggested that they were absent or present in low abundance in most activated sludge processes, and thus likely functionally irrelevant. Here we show the accumulation of comammox Nitrospira in a nitrifying sequencing batch reactor operated at low dissolved oxygen (DO) concentrations. Actual mainstream wastewater was used as influent after primary settling and an upstream pre-treatment process for carbon and phosphorus removal. The ammonia removal rate was stable and exceeded that of the treatment plant's parallel full-scale high DO nitrifying activated sludge reactor. 16S rRNA gene sequencing showed a steady accumulation of Nitrospira to 53% total abundance and a decline in conventional ammonia oxidizing bacteria to <1% total abundance over 400 + days of operation. After ruling out other known ammonia oxidizers, qPCR confirmed the accumulation of comammox Nitrospira beginning around day 200, to eventually comprise 94% of all detected amoA and 4% of total bacteria by day 407. Quantitative fluorescence in-situ hybridization confirmed the increasing trend and high relative abundance of Nitrospira. These results demonstrate that comammox can be metabolically relevant to nitrogen transformation in wastewater treatment, and can even dominate the ammonia oxidizing community. Our results suggest that comammox may be an important functional group in energy efficient nitrification systems designed to operate at low DO levels.


Subject(s)
Ammonia , Nitrification , Bacteria , Oxidation-Reduction , Oxygen , Phylogeny , RNA, Ribosomal, 16S
SELECTION OF CITATIONS
SEARCH DETAIL
...