Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 89(7): 075105, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30068093

ABSTRACT

We designed and built a mobile experimental set-up for studying the interaction of ion beams with solid samples in a wide temperature range from 9 to 300 K. It is either possible to mount up to three samples prepared ex situ or to prepare samples by condensation of molecules from gases or vapours onto IR or Visible-ultraviolet (Vis-UV) transparent windows. The physico-chemical evolution during irradiation can be followed in situ with different analysis techniques including Fourier transform infrared spectroscopy, Vis-UV, and quadrupole mass spectrometry.

2.
Phys Rev Lett ; 118(23): 233402, 2017 Jun 09.
Article in English | MEDLINE | ID: mdl-28644649

ABSTRACT

Fragmentation of molecular nitrogen dimers (N_{2})_{2} induced by collision with low energy 90 keV Ar^{9+} ions is studied to evidence the influence of a molecular environment on the fragmentation dynamics of N_{2} cations. Following the capture of three or four electrons from the dimer, the three-body N_{2}^{+}+N^{m+}+N^{n+} [with (m,n)=(1,1) or (1, 2)] fragmentation channels provide clean experimental cases where molecular fragmentation may occur in the presence of a neighbor molecular cation. The effect of the environment on the fragmentation dynamics within the dimer is investigated through the comparison of the kinetic energy release (KER) spectra for these three-body channels and for isolated N_{2}^{(m+n)+} monomer cations. The corresponding KER spectra exhibit energy shifts of the order of 10 eV, attributed to the deformation of the N^{m+}+N^{n+} potential energy curves in the presence of the neighboring N_{2}^{+} cation. The KER structures remain unchanged, indicating that the primary collision process is not significantly affected by the presence of a neighbor molecule.

3.
Rev Sci Instrum ; 87(11): 113901, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910696

ABSTRACT

An innovative experimental setup, PELIICAEN, allowing the modification of materials and the study of the effects induced by multiply charged ion beams at the nanoscale is presented. This ultra-high vacuum (below 5 × 10-10 mbar) apparatus is equipped with a focused ion beam column using multiply charged ions and a scanning electron microscope developed by Orsay Physics, as well as a scanning probe microscope. The dual beam approach coupled to the scanning probe microscope achieves nanometer scale in situ topological analysis of the surface modifications induced by the ion beams. Preliminary results using the different on-line characterization techniques to study the formation of nano-hillocks on silicon and mica substrates are presented to illustrate the performances of the setup.

SELECTION OF CITATIONS
SEARCH DETAIL
...