Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 38(35): 10836-10853, 2022 Sep 06.
Article in English | MEDLINE | ID: mdl-35998345

ABSTRACT

Hydrofluorocarbons (HFCs) have been used extensively as refrigerants over the past four decades; however, HFCs are currently being phased out due to large global warming potentials. As the next generation of hydrofluoroolefin refrigerants are phased in, action must be taken to responsibly and sustainably deal with the HFCs currently in circulation. Ideally, unused HFCs can be reclaimed and recycled; however, many HFCs in circulation are azeotropic or near-azeotropic mixtures and must be separated before recycling. Previously, pure gas isotherm data were presented for both HFC-125 (pentafluoroethane) and HFC-32 (difluoromethane) with zeolite 5A, and it was concluded that this zeolite could separate refrigerant R-410A (50/50 wt % HFC-125/HFC-32). To further investigate the separation capabilities of zeolite 5A, binary adsorption was measured for the same system using the Integral Mass Balance method. Zeolite 5A showed a selectivity of 9.6-10.9 for HFC-32 over the composition range of 25-75 mol % HFC-125. Adsorbed phase activity coefficients were calculated from binary adsorption data. The Spreading Pressure Dependent, modified nonrandom two-liquid, and modified Wilson activity coefficient models were fit to experimental data, and the resulting activity coefficient models were used in Real Adsorbed Solution Theory (RAST). RAST binary adsorption model predictions were compared with Ideal Adsorbed Solution Theory (IAST) predictions made using the Dual-Site Langmuir, Tóth, and Jensen and Seaton pure gas isotherm models. Both IAST and RAST yielded qualitatively accurate predictions; however, quantitative accuracy was greatly improved using RAST models. Diffusion behavior of HFC-125 and HFC-32 was also investigated by fitting the isothermal Fickian diffusion model to kinetic data. Molecular-level phenomena were investigated to understand both thermodynamic and kinetic behaviors.

2.
Chemistry ; 27(41): 10589-10594, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-33929053

ABSTRACT

Ethyl acetate is an important chemical raw material and solvent. It is also a key volatile organic compound in the brewing industry and a marker for lung cancer. Materials that are highly selective toward ethyl acetate are needed for its separation and detection. Here, we report a trianglimine macrocycle (TAMC) that selectively adsorbs ethyl acetate by forming a solvate. Crystal structure prediction showed this to be the lowest energy solvate structure available. This solvate leaves a metastable, "templated" cavity after solvent removal. Adsorption and breakthrough experiments confirmed that TAMC has adequate adsorption kinetics to separate ethyl acetate from azeotropic mixtures with ethanol, which is a challenging and energy-intensive industrial separation.


Subject(s)
Acetates , Macrocyclic Compounds , Solvents
3.
Phys Chem Chem Phys ; 10(9): 1336-46, 2008 Mar 07.
Article in English | MEDLINE | ID: mdl-18292869

ABSTRACT

Low energy electron diffraction, Auger electron spectroscopy, X-ray photoelectron spectroscopy and line of sight mass spectrometry have been used to study the adsorption and desorption of dimethyldisulfide (DMDS) on Au(111). At 300 K adsorption is dissociative, forming a chemisorbed adlayer of methylthiolate with a 1/3 ML, (sq rt 3 x sq rt 3)R30 degrees, structure. At 100 K adsorption is molecular, with dissociation to form the 1/3 ML (sq rt 3 x sq rt 3)R30 degrees methylthiolate structure occurring at 138-160 K. A physisorbed DMDS layer, with a coverage of 1/6 ML of DMDS, forms on top of the (sq rt 3 x sq rt 3)R30 degrees chemisorbed MT surface for T < or = 180 K, with multilayers forming for T < or = 150 K. In temperature programmed desorption, multilayers of DMDS desorbed with zero order kinetics and an activation energy of 41 kJ mol(-1); the physisorbed layer desorbed with first order kinetics, exhibiting repulsive lateral interactions with an activation energy which varied from 63 kJ mol(-1) (theta = 0) to 51 kJ mol(-1) (theta = 1); the chemisorbed methylthiolate layer desorbed associatively as DMDS via the physisorbed layer, the activation energy for the reaction, 2 methylthiolate --> physisorbed DMDS, exhibiting repulsive lateral interactions with an activation energy which varied from 65 kJ mol(-1) (theta = 0) to 61 kJ mol(-1) (theta = 1). The physisorbed disulfide layer explains the pre-cursor state adsorption kinetics observed in sticking probability measurement, while its relatively facile formation provides a mechanism by which thiolate self-assembled monolayers can become mobile at room temperature.


Subject(s)
Disulfides/chemistry , Gold/chemistry , Adsorption , Kinetics , Spectrum Analysis/instrumentation , Spectrum Analysis/methods , Surface Properties , Temperature , Time Factors , X-Rays
4.
Langmuir ; 21(25): 11684-9, 2005 Dec 06.
Article in English | MEDLINE | ID: mdl-16316101

ABSTRACT

Line-of-sight mass spectroscopy (LOSMS) has been used to study the displacement reaction of ( radical3x radical3)R30 degrees methylthiolate on Au(111) by butylthiolate. The reaction was carried out at room temperature and constant saturation coverage, by exposing the methylthiolate-covered surface to dibutyl disulfide gas. The adsorbed methylthiolate was desorbed as dimethyl disulfide and the cross product methylbutyl disulfide, both identified by LOSMS. This shows that reaction occurs between adsorbed thiolates of different chain length at room temperature, while the kinetics indicate that a rapid equilibrium is established between immobile, chemisorbed thiolates, and highly mobile, physisorbed disulfides.

SELECTION OF CITATIONS
SEARCH DETAIL
...