Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Front Mol Biosci ; 10: 1177560, 2023.
Article in English | MEDLINE | ID: mdl-37325479

ABSTRACT

Proliferative forms of glomerulonephritis are characterized by the influx of leukocytes, albuminuria, and loss of kidney function. The glomerular endothelial glycocalyx is a thick carbohydrate layer that covers the endothelium and is comprised of heparan sulfate (HS), which plays a pivotal role in glomerular inflammation by facilitating endothelial-leukocyte trafficking. We hypothesize that the exogenous glomerular glycocalyx may reduce the glomerular influx of inflammatory cells during glomerulonephritis. Indeed, administration of mouse glomerular endothelial cell (mGEnC)-derived glycocalyx constituents, or the low-molecular-weight heparin enoxaparin, reduced proteinuria in mice with experimental glomerulonephritis. Glomerular influx of granulocytes and macrophages, as well as glomerular fibrin deposition, was reduced by the administration of mGEnC-derived glycocalyx constituents, thereby explaining the improved clinical outcome. HSglx also inhibited granulocyte adhesion to human glomerular endothelial cells in vitro. Notably, a specific HSglx fraction inhibited both CD11b and L-selectin binding to activated mGEnCs. Mass spectrometry analysis of this specific fraction revealed six HS oligosaccharides, ranging from tetra- to hexasaccharides with 2-7 sulfates. In summary, we demonstrate that exogenous HSglx reduces albuminuria during glomerulonephritis, which is possibly mediated via multiple mechanisms. Our results justify the further development of structurally defined HS-based therapeutics for patients with (acute) inflammatory glomerular diseases, which may be applicable to non-renal inflammatory diseases as well.

2.
PLoS One ; 16(12): e0261722, 2021.
Article in English | MEDLINE | ID: mdl-34941931

ABSTRACT

Glomerulonephritis is an acquired serious glomerular disease, which involves the interplay of many factors such as cytokines, chemokines, inflammatory cells, and heparan sulfate (HS). We previously showed that blocking of inflammatory heparan sulfate domains on cultured glomerular endothelium by specific anti-HS single chain antibodies reduced polymorphonuclear cell (PMN) adhesion and chemokine binding. We hypothesized that injection of anti-HS antibodies in PMN-driven experimental glomerulonephritis should reduce glomerular influx of PMNs and thereby lead to a better renal outcome. In contrast to our hypothesis, co-injection of anti-HS antibodies did not alter the final outcome of anti-glomerular basement membrane (anti-GBM)-induced glomerulonephritis. Glomerular PMN influx, normally peaking 2 hours after induction of glomerulonephritis with anti-GBM IgG was not reduced by co-injection of anti-HS antibodies. Four days after induction of glomerulonephritis, albuminuria, renal function, glomerular hyalinosis and fibrin deposition were similar in mice treated and not treated with anti-HS antibodies. Interestingly, we observed transient effects in mice co-injected with anti-HS antibodies compared to mice that did not receive anti-HS antibodies: (i) a decreased renal function 2 hours and 1 day after induction of glomerulonephritis; (ii) an increased albuminuria after 2 hours and 1 day; (iii) an increased glomerular fibrin deposition after 1 day; (iv) a reduced glomerular macrophage influx after 1 day; (v) a sustained glomerular presence of PMNs at day 1 and 4, accompanied by an increased renal expression of IL-6, CXCL1, ICAM-1, L-selectin, CD11b and NF-κB. The mechanism underlying these observations induced by anti-HS antibodies remains unclear, but may be explained by a temporarily altered glycocalyx and/or altered function of PMNs due to the binding of anti-HS antibodies. Nevertheless, the evaluated anti-HS antibodies do not show therapeutic potential in anti-GBM-induced glomerulonephritis. Future research should evaluate other strategies to target HS domains involved in inflammatory processes during glomerulonephritis.


Subject(s)
Glomerulonephritis/metabolism , Kidney Glomerulus/metabolism , Single-Chain Antibodies/pharmacology , Animals , CD11b Antigen/biosynthesis , Chemokine CXCL1/biosynthesis , Fibrin/metabolism , Gene Expression Regulation , Glomerulonephritis/pathology , Glomerulonephritis/prevention & control , Heparitin Sulfate , Intercellular Adhesion Molecule-1/biosynthesis , Interleukin-6/biosynthesis , Kidney Glomerulus/pathology , L-Selectin/biosynthesis , Mice
3.
Kidney Int ; 93(6): 1356-1366, 2018 06.
Article in English | MEDLINE | ID: mdl-29551516

ABSTRACT

Immunoglobulin A (IgA) nephropathy (IgAN), the most common glomerulonephritis worldwide, is characterized by IgA depositions in the kidney. Deficiency of CD37, a leukocyte-specific tetraspanin, leads to spontaneous development of renal pathology resembling IgAN. However, the underlying molecular mechanism has not been resolved. Here we found that CD37 expression on B cells of patients with IgAN was significantly decreased compared to B cells of healthy donors. Circulating interleukin (IL)-6 levels, but not tumor necrosis factor-α or IL-10, were elevated in Cd37-/- mice compared to wild-type mice after lipopolysaccharide treatment. Cd37-/- mice displayed increased glomerular neutrophil influx, immune complex deposition, and worse renal function. To evaluate the role of IL-6 in the pathogenesis of accelerated renal pathology in Cd37-/-mice, we generated Cd37xIl6 double-knockout mice. These double-knockout and Il6-/- mice displayed no glomerular IgA deposition and were protected from exacerbated renal failure following lipopolysaccharide treatment. Moreover, kidneys of Cd37-/- mice showed more mesangial proliferation, endothelial cell activation, podocyte activation, and segmental podocyte foot process effacement compared to the double-knockout mice, emphasizing that IL-6 mediates renal pathology in Cd37-/- mice. Thus, our study indicates that CD37 may protect against IgA nephropathy by inhibition of the IL-6 pathway.


Subject(s)
Glomerulonephritis, IGA/metabolism , Immunoglobulin A/metabolism , Interleukin-6/metabolism , Kidney Glomerulus/metabolism , Tetraspanins/deficiency , Albuminuria/immunology , Albuminuria/metabolism , Albuminuria/prevention & control , Animals , Antigens, CD/genetics , Antigens, Neoplasm/blood , Antigens, Neoplasm/genetics , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Case-Control Studies , Cell Proliferation , Disease Models, Animal , Genetic Predisposition to Disease , Glomerulonephritis, IGA/immunology , Glomerulonephritis, IGA/pathology , Glomerulonephritis, IGA/prevention & control , Humans , Immunoglobulin A/immunology , Interleukin-6/deficiency , Interleukin-6/genetics , Kidney Glomerulus/immunology , Kidney Glomerulus/pathology , Kidney Glomerulus/physiopathology , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration , Phenotype , Podocytes/immunology , Podocytes/metabolism , Podocytes/pathology , Tetraspanins/blood , Tetraspanins/genetics
4.
Kidney Int ; 90(5): 1012-1022, 2016 11.
Article in English | MEDLINE | ID: mdl-27575559

ABSTRACT

Proteinuria is one of the first clinical signs of diabetic nephropathy and an independent predictor for the progression to renal failure. Cathepsin L, a lysosomal cysteine protease, can be involved in the development of proteinuria by degradation of proteins that are important for normal podocyte architecture, such as the CD2-associated protein, synaptopodin, and dynamin. Cathepsin L also activates heparanase, a heparan sulfate endoglycosidase previously shown to be crucial for the development of diabetic nephropathy. Here, we evaluated the exact mode of action of cathepsin L in the development of proteinuria in streptozotocin-induced diabetes. Cathepsin L-deficient mice, in contrast to their wild-type littermates, failed to develop albuminuria, mesangial matrix expansion, tubulointerstitial fibrosis, and renal macrophage influx and showed a normal renal function. In wild-type mice the early development of albuminuria correlated with the activation of heparanase and loss of heparan sulfate expression, whereas loss of synaptopodin expression and podocyte damage occurred at a later stage. Thus, cathepsin L is causally involved in the pathogenesis of experimental diabetic nephropathy. Most likely, cathepsin L-dependent heparanase activation is crucial for the development of albuminuria and renal damage.


Subject(s)
Cathepsin L/metabolism , Diabetes Mellitus, Experimental/complications , Diabetic Nephropathies/etiology , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cytoskeletal Proteins/metabolism , Dynamins/metabolism , Glucuronidase/metabolism , Mice, Inbred C57BL , Microfilament Proteins/metabolism
5.
J Am Soc Nephrol ; 27(12): 3545-3551, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27026367

ABSTRACT

Diabetic nephropathy (DN) is the leading cause of CKD in the Western world. Endothelin receptor antagonists have emerged as a novel treatment for DN, but the mechanisms underlying the protective effect remain unknown. We previously showed that both heparanase and endothelin-1 are essential for the development of DN. Here, we further investigated the role of these proteins in DN, and demonstrated that endothelin-1 activates podocytes to release heparanase. Furthermore, conditioned podocyte culture medium increased glomerular transendothelial albumin passage in a heparanase-dependent manner. In mice, podocyte-specific knockout of the endothelin receptor prevented the diabetes-induced increase in glomerular heparanase expression, consequent reduction in heparan sulfate expression and endothelial glycocalyx thickness, and development of proteinuria observed in wild-type counterparts. Our data suggest that in diabetes, endothelin-1 signaling, as occurs in endothelial activation, induces heparanase expression in the podocyte, damage to the glycocalyx, proteinuria, and renal failure. Thus, prevention of these effects may constitute the mechanism of action of endothelin receptor blockers in DN.


Subject(s)
Endothelin-1/physiology , Glucuronidase/physiology , Glycocalyx/enzymology , Kidney Glomerulus/enzymology , Kidney Glomerulus/ultrastructure , Proteinuria/etiology , Animals , Diabetic Nephropathies/etiology , Male , Mice , Podocytes/enzymology
6.
Am J Pathol ; 186(4): 805-15, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26873445

ABSTRACT

Heparanase, a heparan sulfate (HS)--specific endoglucuronidase, mediates the onset of proteinuria and renal damage during experimental diabetic nephropathy. Glomerular heparanase expression is increased in most proteinuric diseases. Herein, we evaluated the role of heparanase in two models of experimental glomerulonephritis, being anti-glomerular basement membrane and lipopolysaccharide-induced glomerulonephritis, in wild-type and heparanase-deficient mice. Induction of experimental glomerulonephritis led to an increased heparanase expression in wild-type mice, which was associated with a decreased glomerular expression of a highly sulfated HS domain, and albuminuria. Albuminuria was reduced in the heparanase-deficient mice in both models of experimental glomerulonephritis, which was accompanied by a better renal function and less renal damage. Notably, glomerular HS expression was preserved in the heparanase-deficient mice. Glomerular leukocyte and macrophage influx was reduced in the heparanase-deficient mice, which was accompanied by a reduced expression of both types 1 and 2 helper T-cell cytokines. In vitro, tumor necrosis factor-α and lipopolysaccharide directly induced heparanase expression and increased transendothelial albumin passage. Our study shows that heparanase contributes to proteinuria and renal damage in experimental glomerulonephritis by decreasing glomerular HS expression, enhancing renal leukocyte and macrophage influx, and affecting the local cytokine milieu.


Subject(s)
Diabetic Nephropathies/metabolism , Glomerular Basement Membrane/metabolism , Glomerulonephritis/etiology , Glomerulonephritis/metabolism , Glucuronidase/metabolism , Acute Disease , Animals , Heparitin Sulfate/metabolism , Mice, Inbred C57BL , Proteinuria/metabolism , Tumor Necrosis Factor-alpha/metabolism
7.
PLoS One ; 10(9): e0134946, 2015.
Article in English | MEDLINE | ID: mdl-26322947

ABSTRACT

Dermatan sulfate (DS), also known as chondroitin sulfate (CS)-B, is a member of the linear polysaccharides called glycosaminoglycans (GAGs). The expression of CS/DS and DS proteoglycans is increased in several fibrotic renal diseases, including interstitial fibrosis, diabetic nephropathy, mesangial sclerosis and nephrosclerosis. Little, however, is known about structural alterations in DS in renal diseases. The aim of this study was to evaluate the renal expression of two different DS domains in renal transplant rejection and glomerular pathologies. DS expression was evaluated in normal renal tissue and in kidney biopsies obtained from patients with acute interstitial or vascular renal allograft rejection, patients with interstitial fibrosis and tubular atrophy (IF/TA), and from patients with focal segmental glomerulosclerosis (FSGS), membranous glomerulopathy (MGP) or systemic lupus erythematosus (SLE), using our unique specific anti-DS antibodies LKN1 and GD3A12. Expression of the 4/2,4-di-O-sulfated DS domain recognized by antibody LKN1 was decreased in the interstitium of transplant kidneys with IF/TA, which was accompanied by an increased expression of type I collagen, decorin and transforming growth factor beta (TGF-ß), while its expression was increased in the interstitium in FSGS, MGP and SLE. Importantly, all patients showed glomerular LKN1 staining in contrast to the controls. Expression of the IdoA-Gal-NAc4SDS domain recognized by GD3A12 was similar in controls and patients. Our data suggest a role for the DS domain recognized by antibody LKN1 in renal diseases with early fibrosis. Further research is required to delineate the exact role of different DS domains in renal fibrosis.


Subject(s)
Dermatan Sulfate/metabolism , Graft Rejection/metabolism , Kidney Diseases/metabolism , Kidney/metabolism , Adolescent , Adult , Aged , Child, Preschool , Collagen Type I/metabolism , Female , Graft Rejection/pathology , Humans , Kidney/pathology , Kidney Diseases/pathology , Kidney Transplantation , Male , Middle Aged , Transforming Growth Factor beta/metabolism , Young Adult
8.
J Pathol ; 237(4): 472-81, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26202309

ABSTRACT

The glomerular filtration barrier consists of podocytes, the glomerular basement membrane, and endothelial cells covered with a glycocalyx. Heparan sulphate (HS) in the glomerular filtration barrier is reduced in patients with proteinuria, which is associated with increased expression of the HS-degrading enzyme heparanase. Previously, we showed that heparanase is essential for the development of proteinuria in experimental diabetic nephropathy. Vitamin D supplementation reduces podocyte loss and proteinuria in vitro and in vivo. Therefore, we hypothesize that vitamin D reduces proteinuria by reducing glomerular heparanase. Adriamycin-exposed rats developed proteinuria and showed increased heparanase expression, which was reduced by 1,25-dihydroxyvitamin D3 (1,25-D3) treatment. In vitro, adriamycin increased heparanase mRNA in the podocyte, which could be corrected by 1,25-D3 treatment. In addition, 1,25-D3 treatment reduced transendothelial albumin passage after adriamycin stimulation. In line with these results, we showed direct binding of the vitamin D receptor to the heparanase promoter, and 1,25-D3 dose-dependently reduced heparanase promoter activity. Finally, 1,25-D3-deficient 25-hydroxy-1α-hydroxylase knockout mice developed proteinuria and showed increased heparanase, which was normalized by 1,25-D3 treatment. Our data suggest that the protective effect of vitamin D on the development of proteinuria is mediated by inhibiting heparanase expression in the podocyte.


Subject(s)
Calcitriol/pharmacology , Glucuronidase/metabolism , Podocytes/enzymology , Proteinuria/metabolism , Animals , Chromatin Immunoprecipitation , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Fluorescent Antibody Technique , Heparitin Sulfate/metabolism , Mice , Mice, Knockout , Podocytes/drug effects , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction
9.
Mol Immunol ; 63(2): 203-8, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25246018

ABSTRACT

Complement factor H (FH) systemically inhibits excessive complement activation in the microenvironment of host cells, but for instance not on microbes. This self-recognition is mediated by two binding sites that recognize distinctly sulfated heparan sulfate (HS) domains. The interaction with HS not only concentrates FH on host cells, but directly affects its activity, evoking novel models of conformational activation. Genetic aberrations in the HS-binding domains systemically disturb the protective function of FH, yet the resulting loss of complement control affects mainly ocular and renal tissues. Recent results suggest that the specific expression of HS domains in these tissues restricts the interaction of HS to a single binding site within FH. This lack of redundancy could predispose eyes and kidneys to complement-mediated damage, making HS a central determinant for FH-associated diseases.


Subject(s)
Complement Factor H/immunology , Heparitin Sulfate/immunology , Kidney Diseases/immunology , Complement Factor H/chemistry , Complement Factor H/metabolism , Heparitin Sulfate/chemistry , Heparitin Sulfate/metabolism , Humans , Organ Specificity
10.
Kidney Int ; 86(5): 932-42, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24759151

ABSTRACT

The glomerular endothelial glycocalyx is postulated to be an important modulator of permeability and inflammation. The glycocalyx consists of complex polysaccharides, the main functional constituent of which, heparan sulfate (HS), is synthesized and modified by multiple enzymes. The N-deacetylase-N-sulfotransferase (Ndst) enzymes initiate and dictate the modification process. Here we evaluated the effects of modulation of HS in the endothelial glycocalyx on albuminuria and glomerular leukocyte influx using mice deficient in endothelial and leukocyte Ndst1 (TEKCre+/Ndst1flox/flox). In these mice, glomerular expression of a specific HS domain was significantly decreased, whereas the expression of other HS domains was normal. In the endothelial glycocalyx, this specific HS structure was not associated with albuminuria or with changes in renal function. However, glomerular leukocyte influx was significantly reduced during antiglomerular basement membrane nephritis, which was associated with less glomerular injury and better renal function. In vitro decreased adhesion of wild-type and Ndst1-deficient granulocytes to Ndst1-silenced glomerular endothelial cells was found, accompanied by a decreased binding of chemokines and L-selectin. Thus, modulation of HS in the glomerular endothelial glycocalyx significantly reduced the inflammatory response in antiglomerular basement membrane nephritis.


Subject(s)
Anti-Glomerular Basement Membrane Disease/metabolism , Chemotaxis, Leukocyte , Endothelial Cells/metabolism , Glycocalyx/metabolism , Heparitin Sulfate/metabolism , Kidney Glomerulus/metabolism , Leukocytes/metabolism , Animals , Anti-Glomerular Basement Membrane Disease/genetics , Anti-Glomerular Basement Membrane Disease/immunology , Anti-Glomerular Basement Membrane Disease/physiopathology , Anti-Glomerular Basement Membrane Disease/prevention & control , Autoantibodies , Cell Adhesion , Cell Line , Chemokines/metabolism , Coculture Techniques , Disease Models, Animal , Down-Regulation , Endothelial Cells/immunology , Female , Glycocalyx/immunology , Kidney Glomerulus/immunology , Kidney Glomerulus/physiopathology , L-Selectin/metabolism , Leukocytes/immunology , Male , Mice, Inbred C57BL , Mice, Knockout , RNA Interference , Signal Transduction , Sulfotransferases/deficiency , Sulfotransferases/genetics , Time Factors , Transfection
11.
J Immunol ; 192(8): 3908-3914, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24639348

ABSTRACT

Chemokines comprise a family of secreted proteins that activate G protein-coupled chemokine receptors and thereby control the migration of leukocytes during inflammation or immune surveillance. The positional information required for such migratory behavior is governed by the binding of chemokines to membrane-tethered glycosaminoglycans (GAGs), which establishes a chemokine concentration gradient. An often observed but incompletely understood behavior of chemokines is the ability of unrelated chemokines to enhance the potency with which another chemokine subtype can activate its cognate receptor. This phenomenon has been demonstrated to occur between many chemokine combinations and across several model systems and has been dubbed chemokine cooperativity. In this study, we have used GAG binding-deficient chemokine mutants and cell-based functional (migration) assays to demonstrate that chemokine cooperativity is caused by competitive binding of chemokines to GAGs. This mechanistic explanation of chemokine cooperativity provides insight into chemokine gradient formation in the context of inflammation, in which multiple chemokines are secreted simultaneously.


Subject(s)
Chemokines/metabolism , Glycosaminoglycans/metabolism , Animals , Binding, Competitive , CHO Cells , Chemokine CCL19/metabolism , Chemokine CCL21/metabolism , Chemokine CXCL13/metabolism , Chemokines/chemistry , Chemotaxis , Cricetinae , Cricetulus , Models, Biological , Protein Binding , Protein Multimerization , Receptors, Chemokine/metabolism
12.
Clin J Am Soc Nephrol ; 9(4): 698-704, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24458084

ABSTRACT

BACKGROUND AND OBJECTIVES: ESRD is accompanied by endothelial dysfunction. Because the endothelial glycocalyx (endothelial surface layer) governs interactions between flowing blood and the vessel wall, perturbation could influence disease progression. This study used a novel noninvasive sidestream-darkfield imaging method, which measures the accessibility of red blood cells to the endothelial surface layer in the microcirculation (perfused boundary region), to investigate whether renal function is associated with endothelial surface layer dimensions. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Perfused boundary region was measured in control participants (n=10), patients with ESRD (n=23), participants with normal kidney function after successful living donor kidney transplantation (n=12), and patients who developed interstitial fibrosis/tubular atrophy after kidney transplantation (n=10). In addition, the endothelial activation marker angiopoietin-2 and shed endothelial surface layer components syndecan-1 and soluble thrombomodulin were measured using ELISA. RESULTS: Compared with healthy controls (1.82 ± 0.16 µm), ESRD patients had a larger perfused boundary region (+0.23; 95% confidence interval, 0.46 to <0.01; P<0.05), which signifies loss of endothelial surface layer dimensions. This large perfused boundary region was accompanied by higher circulating levels of syndecan-1 (+57.71; 95% confidence interval, 17.38 to 98.04; P<0.01) and soluble thrombomodulin (+12.88; 95% confidence interval, 0.29 to 25.46; P<0.001). After successful transplantation, the perfused boundary region was indistinguishable from healthy controls (without elevated levels of soluble thrombomodulin or syndecan-1). In contrast, however, patients who developed interstitial fibrosis and tubular atrophy showed a large perfused boundary region (+0.36; 95% confidence interval, 0.09 to 0.63; P<0.01) and higher levels of endothelial activation markers. In addition, a significant correlation between perfused boundary region, angiopoietin-2, and eGFR was observed (perfused boundary region versus GFR: Spearman's ρ=0.31; P<0.05; perfused boundary region versus angiopoietin-2: Spearman's ρ=-0.33; P<0.05). CONCLUSION: Reduced renal function is strongly associated with low endothelial surface layer dimensions. After successful kidney transplantation, the endothelial surface layer is indistinguishable from control.


Subject(s)
Endothelial Cells/pathology , Glycocalyx/pathology , Kidney Failure, Chronic/pathology , Kidney/physiopathology , Microvessels/pathology , Tongue/blood supply , Adult , Aged , Angiopoietin-2/blood , Animals , Atrophy , Biomarkers/blood , Case-Control Studies , Cross-Sectional Studies , Endothelial Cells/metabolism , Fibrosis , Humans , Kidney/pathology , Kidney/surgery , Kidney Failure, Chronic/blood , Kidney Failure, Chronic/physiopathology , Kidney Failure, Chronic/surgery , Kidney Transplantation/adverse effects , Male , Mice , Microcirculation , Microvessels/metabolism , Microvessels/physiopathology , Middle Aged , Predictive Value of Tests , Regional Blood Flow , Reproducibility of Results , Syndecan-1/blood , Thrombomodulin/blood , Treatment Outcome
13.
Nephrol Dial Transplant ; 29(1): 49-55, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24166469

ABSTRACT

Proteinuria is a hallmark of many glomerular diseases and an independent risk factor for the progression of renal failure. Proteinuria results from damage to the glomerular filtration barrier (GFB), which plays a critical role in size- and charge-selective filtration. The GFB consists of three layers, which is the fenestrated endothelium that is covered by the glycocalyx, the podocytes and the intervening glomerular basement membrane. Defects in one of the three layers in the GFB can lead to the development of proteinuria. Heparan sulphate (HS) is a negatively charged polysaccharide that is abundantly expressed in all layers of the GFB. HS expression in the GFB is reduced in the majority of patients with proteinuria, which is associated with an increased glomerular expression of the HS-degrading enzyme heparanase. The primary role of HS in the development of proteinuria has been challenged after the establishment of several genetically engineered mouse models with an altered HS expression that did not display development of overt proteinuria. However, in a recent study, we showed that heparanase is essential for the development of proteinuria in diabetic nephropathy, which suggests that loss of HS contributes to the development of proteinuria. Recent studies also further highlight the importance of the glomerular endothelial glycocalyx in charge-selective filtration and the development of proteinuria. This review aims to summarize our current knowledge on the role of in particular HS and heparanase in the development of proteinuria.


Subject(s)
Glucuronidase/physiology , Glycocalyx/physiology , Animals , Diabetic Nephropathies/metabolism , Female , Glomerular Basement Membrane/metabolism , Heparitin Sulfate/metabolism , Humans , Kidney Glomerulus/metabolism , Male , Podocytes/metabolism , Proteinuria/etiology , Proteinuria/physiopathology
14.
Am J Pathol ; 182(5): 1532-40, 2013 May.
Article in English | MEDLINE | ID: mdl-23518410

ABSTRACT

Glomerular endothelium is highly fenestrated, and its contribution to glomerular barrier function is the subject of debate. In recent years, a polysaccharide-rich endothelial surface layer (ESL) has been postulated to act as a filtration barrier for large molecules, such as albumin. To test this hypothesis, we disturbed the ESL in C57Bl/6 mice using long-term hyaluronidase infusion for 4 weeks and monitored albumin passage using immunolabeling and correlative light-electron microscopy that allows for complete and integral assessment of glomerular albumin passage. ESL ultrastructure was visualized by transmission electron microscopy using cupromeronic blue and by localization of ESL binding lectins using confocal microscopy. We demonstrate that glomerular fenestrae are filled with dense negatively charged polysaccharide structures that are largely removed in the presence of circulating hyaluronidase, leaving the polysaccharide surfaces of other glomerular cells intact. Both retention of native ferritin [corrected] in the glomerular basement membrane and systemic blood pressure were unaltered. Enzyme treatment, however, induced albumin passage across the endothelium in 90% of glomeruli, whereas this could not be observed in controls. Yet, there was no net albuminuria due to binding and uptake of filtered albumin by the podocytes and parietal epithelium. ESL structure and function completely recovered within 4 weeks on cessation of hyaluronidase infusion. Thus, the polyanionic ESL component, hyaluronan, is a key component of the glomerular endothelial protein permeability barrier.


Subject(s)
Albumins/metabolism , Endothelium/physiology , Glomerular Filtration Rate/physiology , Kidney Glomerulus/physiology , Animals , Cattle , Endothelium/drug effects , Endothelium/ultrastructure , Fluorescence , Glomerular Basement Membrane/drug effects , Glomerular Basement Membrane/physiology , Glomerular Basement Membrane/ultrastructure , Glomerular Filtration Rate/drug effects , Horses , Hyaluronoglucosaminidase/pharmacology , Kidney Glomerulus/cytology , Kidney Glomerulus/drug effects , Kidney Glomerulus/ultrastructure , Lectins/metabolism , Mice , Mice, Inbred C57BL , Permeability/drug effects , Podocytes/cytology , Podocytes/drug effects , Podocytes/ultrastructure
15.
Nephrol Dial Transplant ; 27(7): 2853-61, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22187315

ABSTRACT

BACKGROUND: A reduced heparan sulphate (HS) expression in the glomerular basement membrane of patients with overt diabetic nephropathy is associated with an increased glomerular heparanase expression. We investigated the possible association of urinary heparanase activity with the development of proteinuria in patients with Type 1 diabetes (T1D), Type 2 diabetes (T2D), or membranous glomerulopathy (MGP) as non-diabetic disease controls. METHODS: Heparanase activity, albumin, HS and creatinine were measured in the urine of patients with T1D (n=58) or T2D (n=31), in patients with MGP (n=52) and in healthy controls (n=10). Heparanase messenger RNA (mRNA) expression in leukocytes was determined in a subgroup of patients with T1D (n=19). RESULTS: Urinary heparanase activity was increased in patients with T1D and T2D, which was more prominent in patients with macroalbuminuria, whereas no activity could be detected in healthy controls. Albuminuria levels were associated with increased urinary heparanase activity in diabetic patients (r=0.20; P<0.05) but not in patients with MGP (r=0.11; P=0.43). A lower urinary heparanase activity was observed in diabetic patients treated with inhibitors of the renin-angiotensin-aldosterone system (RAAS), when compared to diabetic patients treated with other anti-hypertensives. Additionally, urinary heparanase activity was associated with age in T1D and MGP. In MGP, heparanase activity and ß2-microglobulin excretion correlated. In patients with T1D, no differences in heparanase mRNA expression in leukocytes could be observed. CONCLUSIONS: Urinary heparanase activity is increased in diabetic patients with proteinuria. However, whether increased heparanase activity is a cause or consequence of proteinuria requires additional research.


Subject(s)
Diabetes Mellitus, Type 1/enzymology , Diabetes Mellitus, Type 1/urine , Diabetes Mellitus, Type 2/enzymology , Diabetes Mellitus, Type 2/urine , Glomerular Basement Membrane/pathology , Glucuronidase/urine , Heparitin Sulfate/metabolism , Adult , Aged , Albuminuria/diagnosis , Blotting, Western , Case-Control Studies , Diabetes Complications/enzymology , Diabetes Complications/etiology , Diabetes Complications/urine , Female , Follow-Up Studies , Glucuronidase/genetics , Humans , Immunoenzyme Techniques , Male , Middle Aged , Prognosis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Renin-Angiotensin System , Reverse Transcriptase Polymerase Chain Reaction
16.
J Am Soc Nephrol ; 18(12): 3119-27, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18003778

ABSTRACT

Heparan sulfate (HS) within the glomerular basement membrane (GBM) is thought to play a major role in the charge-selective properties of the glomerular capillary wall. Recent data, however, raise questions regarding the direct role of HS in glomerular filtration. For example, in situ studies suggest that HS may prevent plasma macromolecules from clogging the GBM, keeping it in an "open" state. We evaluated this potential role of HS in vivo by studying the passage of protein through the glomerular capillary wall in the presence and absence of HS. Intravenous administration of neuraminidase removed neuraminic acid--but not HS--from the GBM, and this led to albuminuria. Concomitant removal of HS with heparinase III, confirmed by ultrastructural imaging, prevented the development of albuminuria in response to neuraminidase treatment. Taken together, these results suggest that HS keeps the GBM in an open state, facilitating passage of proteins through the glomerular capillary wall.


Subject(s)
Basement Membrane/metabolism , Heparitin Sulfate/metabolism , Kidney Glomerulus/metabolism , Albuminuria/metabolism , Animals , Biological Transport , Capillaries/metabolism , Glycosaminoglycans/metabolism , Microscopy, Electron , Models, Biological , Neuraminic Acids/metabolism , Neuraminidase/metabolism , Polysaccharide-Lyases/metabolism , Proteinuria/metabolism , Rats , Rats, Wistar
17.
Nephrol Dial Transplant ; 22(10): 2886-93, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17526541

ABSTRACT

BACKGROUND: Minimal change nephrotic syndrome (MCNS) is the most frequent form of nephrotic syndrome in childhood. In the glomerular basement membrane (GBM) of adult patients with MCNS, a reduced expression of a specific heparan sulphate (HS) domain has been reported. In children with MCNS, urinary activity of the HS-degrading enzyme heparanase was increased. It is, therefore, possible that a decreased GBM HS expression is associated with the pathogenesis of proteinuria in patients with MCNS. METHODS: In this study, HS in glomeruli of five adult and six paediatric patients with MCNS were analysed by immunofluorescence staining using four different antibodies, each defining a specific sulphated HS domain. The pediatric patients were subdivided into three groups depending on the presence or absence of podocyte foot process effacement, the level of proteinuria and prednisone administration at the time of the biopsy. In addition, kidneys of rats with adriamycin nephropathy (ADRN), a model for MCNS, were included in the study. RESULTS: Expression of sulphated HS domains was not aberrant in adult or paediatric patients compared with control subjects. Children with and without proteinuria had the same HS content. In contrast, rats with ADRN showed a decreased glomerular expression of sulphated HS domains. CONCLUSIONS: These results suggest that in patients with MCNS proteinuria is not associated with major changes in glomerular expression of sulphated HS domains.


Subject(s)
Gene Expression Regulation , Kidney Glomerulus/metabolism , Nephrotic Syndrome/metabolism , Adult , Aged , Animals , Biopsy , Child , Child, Preschool , Doxorubicin/pharmacology , Female , Heparitin Sulfate/chemistry , Humans , Kidney/metabolism , Kidney/pathology , Male , Middle Aged , Models, Biological , Podocytes/metabolism , Rats , Rats, Wistar
18.
J Am Soc Nephrol ; 18(3): 823-32, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17251387

ABSTRACT

Heparan sulfates (HS) are long, unbranched, negatively charged polysaccharides that are bound to core proteins. HS in the glomerular basement membrane (GBM) is reported to be important for charge-selective permeability. Aberrant GBM HS expression has been observed in several glomerular diseases, such as diabetic nephropathy and membranous glomerulopathy, and a decrease in HS generally is associated with proteinuria. This study, with the use of a controlled in vivo approach, evaluated whether degradation of HS in rat GBM resulted in acute proteinuria. Rats received two intravenous injections of either heparinase III to digest HS or neuraminidase to remove neuraminic acids (positive control). Urine samples were taken at various time points, and at the end of the experiment, kidneys were removed and analyzed. Injection with heparinase III resulted in a complete loss of glomerular HS as demonstrated by immunofluorescence staining using anti-HS antibodies and by electron microscopy using cupromeronic blue in a critical electrolyte concentration mode. In the urine, a strong increase in HS was found within 2 h after the first injection. Staining for agrin, the major HS proteoglycan core protein in the GBM, was unaltered. No urinary albumin or other proteins were detected at any time point, and no changes in glomerular morphology were noticed. Injection of rats with neuraminidase, however, resulted in a major increase of urinary albumin and was associated with an increase in urinary free neuraminic acid. An increased glomerular staining with Peanut agglutinin lectin, indicative of removal of neuraminic acid, was noted. In conclusion, removal of HS from the GBM does not result in acute albuminuria, whereas removal of neuraminic acid does.


Subject(s)
Glomerular Basement Membrane/metabolism , Glycosaminoglycans/metabolism , Heparitin Sulfate/metabolism , Neuraminic Acids/metabolism , Proteinuria/etiology , Albuminuria/etiology , Albuminuria/metabolism , Animals , Glomerular Basement Membrane/drug effects , Glomerular Basement Membrane/ultrastructure , Heparitin Sulfate/analysis , Kidney/metabolism , Kidney/ultrastructure , Male , Microscopy, Electron , Neuraminidase/pharmacology , Polysaccharide-Lyases/pharmacology , Rats , Rats, Wistar
19.
Am J Kidney Dis ; 48(2): 250-61, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16860191

ABSTRACT

BACKGROUND: Diabetic nephropathy poses an increasing health problem in the Western world, and research to new leads for diagnosis and therapy therefore is warranted. In this respect, heparan sulfates (HSs) offer new possibilities because crude mixtures of these polysaccharides are capable of ameliorating proteinuria. The aim of this study is to immuno(histo)chemically profile HSs from microalbuminuric kidneys from patients with type 1 diabetes and identify specific structural HS alterations associated with early diabetic nephropathy. METHODS: Renal cryosections of control subjects and patients with type 1 diabetes were analyzed immunohistochemically by using a set of 10 unique phage display-derived anti-HS antibodies. HS structures defined by relevant antibodies were characterized chemically by means of enzyme-linked immunosorbent assay and probed for growth factor binding and presence in HS/heparin-containing drugs. RESULTS: In all patients, HS structure defined by the antibody LKIV69 consistently increased in basement membranes of proximal tubules. This structure contained N- and 2-O-sulfates and was involved in fibroblast growth factor 2 binding. It was present in HS/heparin-containing drugs shown to decrease albuminuria in patients with diabetes. The HS structure defined by the antibody HS4C3 increased in the renal mesangium of some patients, especially those who developed macroalbuminuria within 8 to 10 years. This structure contained N- and 6-O-sulfates. For 8 other antibodies, no major differences were observed. CONCLUSION: Specific structural alterations in HSs are associated with early diabetic nephropathy and may offer new leads for early diagnosis and the rational design of therapeutic glycomimetics.


Subject(s)
Diabetic Nephropathies/physiopathology , Glycosaminoglycans/physiology , Heparitin Sulfate/chemistry , Kidney/chemistry , Adolescent , Adult , Albuminuria , Antibodies , Case-Control Studies , Diabetes Mellitus, Type 1/complications , Female , Fibroblast Growth Factor 2/metabolism , Fluorescent Antibody Technique , Heparitin Sulfate/analysis , Humans , Immunohistochemistry , Male
20.
J Am Soc Nephrol ; 16(5): 1279-88, 2005 May.
Article in English | MEDLINE | ID: mdl-15788473

ABSTRACT

Glycosaminoglycans (GAG) play an important role in renal homeostasis. They are strongly negatively charged polysaccharides that bind and modulate a myriad of proteins, including growth factors, cytokines, and enzymes. With the aid of specific phage display-derived antibodies, the distribution of heparan sulfate (HS) and chondroitin sulfate (CS) domains in the normal human kidney was studied. HS domains were specifically located in basement membranes and/or surfaces of renal cells and displayed a characteristic distribution over the nephron. A characteristic location in specific parts of the tubular system was also observed. CS showed mainly an interstitial location. Immunoelectron microscopy indicated specific ultrastructural location of domains. Only partial overlap with any of seven different proteoglycan core proteins was observed. Two HS domains, one highly sulfated (defined by antibody HS4C3) and one low sulfated (defined by antibody RB4Ea12), were studied for their cell biologic relevance with respect to the proliferative effect of FGF-2 on human mesangial cells in vitro. Fibroblast growth factor 2 (FGF-2) binding was HS dependent. Addition of purified HS4C3 antibody but not of the RB4Ea12 antibody counteracted the binding and the proliferative effect of FGF-2, indicating that the HS4C3 domain is involved in FGF-2 handling by mesangial cells. In conclusion, specific GAG domains are differentially distributed in the normal human kidney and are likely involved in binding of effector molecules such as FGF-2. The availability of tools to identify and study relevant GAG structures allows the development of glycomimetica to halt, for instance, mesangial proliferation and matrix production as seen in diabetic nephropathy.


Subject(s)
Antibodies/genetics , Glomerular Mesangium/metabolism , Glycosaminoglycans/immunology , Glycosaminoglycans/metabolism , Peptide Library , Adult , Antibodies/immunology , Antibody Specificity , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/immunology , Chondroitin Sulfates/metabolism , Female , Fibroblast Growth Factor 2/metabolism , Glomerular Mesangium/ultrastructure , Glycosaminoglycans/chemistry , Heparitin Sulfate/chemistry , Heparitin Sulfate/immunology , Heparitin Sulfate/metabolism , Humans , Male , Microscopy, Fluorescence , Microscopy, Immunoelectron , Middle Aged , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...