Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Appl ; 31(8): e02445, 2021 12.
Article in English | MEDLINE | ID: mdl-34448315

ABSTRACT

Pollinators face multiple pressures and there is evidence of populations in decline. As demand for insect-pollinated crops increases, crop production is threatened by shortfalls in pollination services. Understanding the extent of current yield deficits due to pollination and identifying opportunities to protect or improve crop yield and quality through pollination management is therefore of international importance. To explore the extent of "pollination deficits," where maximum yield is not being achieved due to insufficient pollination, we used an extensive dataset on a globally important crop, apples. We quantified how these deficits vary between orchards and countries and we compared "pollinator dependence" across different apple varieties. We found evidence of pollination deficits and, in some cases, risks of overpollination were even apparent for which fruit quality could be reduced by too much pollination. In almost all regions studied we found some orchards performing significantly better than others in terms of avoiding a pollination deficit and crop yield shortfalls due to suboptimal pollination. This represents an opportunity to improve production through better pollinator and crop management. Our findings also demonstrated that pollinator dependence varies considerably between apple varieties in terms of fruit number and fruit quality. We propose that assessments of pollination service and deficits in crops can be used to quantify supply and demand for pollinators and help to target local management to address deficits although crop variety has a strong influence on the role of pollinators.


Subject(s)
Malus , Pollination , Animals , Bees , Crops, Agricultural , Fruit , Insecta
2.
Ecol Evol ; 10(6): 2979-2990, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32211170

ABSTRACT

Hairiness is a salient trait of insect pollinators that has been linked to thermoregulation, pollen uptake and transportation, and pollination success. Despite its potential importance in pollination ecology, hairiness is rarely included in pollinator trait analyses. This is likely due to the lack of standardized and efficient methods to measure hairiness. We describe a novel methodology that uses a stereomicroscope equipped with a live measurement module software to quantitatively measure two components of hairiness: hair density and hair length. We took measures of the two hairiness components in 109 insect pollinator species (including 52 bee species). We analyzed the relationship between hair density and length and between these two components and body size. We combined hair density and length measures to calculate a hairiness index and tested whether hairiness differed between major pollinator groups and bee genera. Body size was strongly and positively correlated to hair length and weakly and negatively correlated to hair density. The correlation between the two hairiness components was weak and negative. According to our hairiness index, butterflies and moths were the hairiest pollinator group, followed by bees, hoverflies, beetles, and other flies. Among bees, bumblebees (Bombus) and mason bees (Osmia) were the hairiest taxa, followed by digger bees (Anthophorinae), sand bees (Andrena), and sweat bees (Halictini). Our methodology provides an effective and standardized measure of the two components of hairiness (hair density and length), thus allowing for a meaningful interpretation of hairiness. We provide a detailed protocol of our methodology, which we hope will contribute to improve our understanding of pollination effectiveness, thermal biology, and responses to climate change in insects.

SELECTION OF CITATIONS
SEARCH DETAIL
...