Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(18): eadj0777, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38691611

ABSTRACT

Open-ocean polynyas formed over the Maud Rise, in the Weddell Sea, during the winters of 2016-2017. Such polynyas are rare events in the Southern Ocean and are associated with deep convection, affecting regional carbon and heat budgets. Using an ocean state estimate, we found that during 2017, early sea ice melting occurred in response to enhanced vertical mixing of heat, which was accompanied by mixing of salt. The melting sea ice compensated for the vertically mixed salt, resulting in a net buoyancy gain. An additional salt input was then necessary to destabilize the upper ocean. This came from a hitherto unexplored polynya-formation mechanism: an Ekman transport of salt across a jet girdling the northern flank of the Maud Rise. Such transport was driven by intensified eastward surface stresses during 2015-2018. Our results illustrate how highly localized interactions between wind, ocean flow and topography can trigger polynya formation in the open Southern Ocean.

3.
Sci Rep ; 13(1): 12967, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37563162

ABSTRACT

Large-scale breeding failures, such as offspring die-offs, can disproportionately impact wildlife populations that are characterized by a few large colonies. However, breeding monitoring-and thus investigations of such die-offs-is especially challenging in species with long reproductive cycles. We investigate two unresolved dramatic breeding failures that occurred in consecutive years (2009 and 2010) in a large king penguin Aptenodytes patagonicus colony, a long-lived species with a breeding cycle lasting over a year. Here we found that a single period, winter 2009, was likely responsible for the occurrence of breeding anomalies during both breeding seasons, suggesting that adults experienced poor foraging conditions at sea at that time. Following that unfavorable winter, the 2009 breeding cohort-who were entering the late stage of chick-rearing-immediately experienced high chick mortality. Meanwhile, the 2010 breeding cohort greatly delayed their arrival and egg laying, which would have otherwise started not long after the winter. The 2010 breeding season continued to display anomalies during the incubation and chick-rearing period, such as high abandonment rate, long foraging trips and eventually the death of all chicks in winter 2010. These anomalies could have resulted from either a domino-effect caused by the delayed laying, the continuation of poor foraging conditions, or both. This study provides an example of a large-scale catastrophic breeding failure and highlights the importance of the winter period on phenology and reproduction success for wildlife that breed in few large colonies.


Subject(s)
Spheniscidae , Animals , Seasons , Chickens , Animals, Wild , Reproduction
4.
Sci Adv ; 8(46): eabq0793, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36383670

ABSTRACT

The formation of sea ice in polar regions is possible because a salinity gradient or halocline keeps the water column stable despite intense cooling. Here, we demonstrate that a unique water property is central to the maintenance of the polar halocline, namely, that the thermal expansion coefficient (TEC) of seawater increases by one order of magnitude between polar and tropical regions. Using a fully coupled climate model, it is shown that, even with excess precipitations, sea ice would not form at all if the near-freezing temperature TEC was not well below its ocean average value. The leading order dependence of the TEC on temperature is essential to the coexistence of the mid/low-latitude thermally stratified and the high-latitude sea ice-covered oceans that characterize our planet. A key implication is that nonlinearities of water properties have a first-order impact on the global climate of Earth and possibly exoplanets.

5.
Sci Rep ; 8(1): 3183, 2018 02 16.
Article in English | MEDLINE | ID: mdl-29453356

ABSTRACT

Antarctic coastal polynyas are regions of persistent open water and are thought to be key bio-physical features within the sea-ice zone. However, their use by the upper trophic levels of ecosystems remains unclear. A unique bio-physical dataset recorded by southern elephant seals reveals that East Antarctic polynyas are a key winter foraging habitat for male seals. During their post-moult trips from Isles Kerguelen to the Antarctic continental shelf, a total of 18 out of 23 seals visited 9 different polynyas, spending on average 25 ± 20% (up to 75%) of their total trip time inside polynyas. Changes in seal foraging and diving behaviours are observed inside polynyas as compared to outside polynyas. Two polynya usages by seals are observed for the inactive and active polynya phases, pointing to different seasonal peaks in prey abundance. During the active polynya phase, we link seal foraging behaviour to changes in the physical stability of the water-column, which likely impact the seasonal biological dynamics within polynyas.


Subject(s)
Behavior, Animal/physiology , Feeding Behavior/physiology , Seals, Earless/physiology , Animals , Antarctic Regions , Diving , Ecosystem , Extreme Environments , Ice Cover , Oceans and Seas , Seasons , Temperature
6.
Sci Data ; 1: 140028, 2014.
Article in English | MEDLINE | ID: mdl-25977785

ABSTRACT

The instrumentation of southern elephant seals with satellite-linked CTD tags has offered unique temporal and spatial coverage of the Southern Indian Ocean since 2004. This includes extensive data from the Antarctic continental slope and shelf regions during the winter months, which is outside the conventional areas of Argo autonomous floats and ship-based studies. This landmark dataset of around 75,000 temperature and salinity profiles from 20-140 °E, concentrated on the sector between the Kerguelen Islands and Prydz Bay, continues to grow through the coordinated efforts of French and Australian marine research teams. The seal data are quality controlled and calibrated using delayed-mode techniques involving comparisons with other existing profiles as well as cross-comparisons similar to established protocols within the Argo community, with a resulting accuracy of ±0.03 °C in temperature and ±0.05 in salinity or better. The data offer invaluable new insights into the water masses, oceanographic processes and provides a vital tool for oceanographers seeking to advance our understanding of this key component of the global ocean climate.


Subject(s)
Databases, Factual , Oceanography , Seals, Earless , Animals , Indian Ocean , Oceanography/methods
7.
Philos Trans R Soc Lond B Biol Sci ; 362(1487): 2169-81, 2007 Nov 29.
Article in English | MEDLINE | ID: mdl-17472917

ABSTRACT

Southern elephant seals, Mirounga leonina, undertake large-scale oceanic movements to access favourable foraging areas. Successful foraging areas of elephant seals from the Kerguelen Islands are investigated here in relation to oceanographic parameters. Movements and diving activity of the seals as well as oceanographic data were collected through a new generation of satellite relayed devices measuring and transmitting locations, pressure, temperature and salinity. For the first time, we have associated foraging behaviour, determined by high increased sinuosity in tracks, and dive density (i.e. number of dives performed per kilometre covered), and changes in body condition, determined by variations in drift rate obtained from drift dives, to identify the oceanographic conditions of successful foraging zones for this species. Two main sectors, one close to the Antarctic continent and the other along the Polar Front (PF), where both foraging activity and body condition increase, seem to be of particular interest for the seals. Within these regions, some seals tended to focus their foraging activity on zones with particular temperature signatures. Along the Antarctic continent, some seals targeted colder waters on the sea bottom during benthic dives, while at the PF the favourable zones tended to be warmer. The possible negative effect of colder waters in Antarctic on the swimming performances of potential fish or squid prey could explain the behaviour of elephant seals in these zones, while warmer waters within the PF could correspond to the optimal conditions for potential myctophid prey of elephant seals.


Subject(s)
Predatory Behavior/physiology , Seals, Earless/physiology , Temperature , Animals , Antarctic Regions , Body Constitution/physiology , Female , Geography , Male , Oceans and Seas , Swimming/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...