Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 129(21): 218001, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36461968

ABSTRACT

In active nematic liquid crystals, activity is able to drive chaotic spatiotemporal flows referred to as active turbulence. Active turbulence has been characterized through theoretical and experimental work as a low Reynolds number phenomenon. We show that, in two dimensions, the active forcing alone is able to trigger hydrodynamic turbulence leading to the coexistence of active and inertial turbulence. This type of flow develops for sufficiently active and extensile flow-aligning nematics. We observe that the combined effect of an extensile nematic and large values of the flow-aligning parameter leads to a broadening of the elastic energy spectrum that promotes a growth of kinetic energy able to trigger an inverse energy cascade.

2.
R Soc Open Sci ; 6(1): 180745, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30800342

ABSTRACT

For a sperm-cell-like flagellated swimmer in an unbounded domain, several numerical models of different fidelity are considered based on the Stokes flow approximation. The models include a regularized Stokeslet method and a three-dimensional finite-element method, which serve as the benchmark solutions for several approximate models considered. The latter include the resistive force theory versions of Lighthill, and Gray and Hancock, as well as a simplified approximation based on computing the hydrodynamic forces exerted on the head and the flagellum separately. It is shown how none of the simplified models is robust enough with regards to predicting the effect of the swimmer head shape change on the swimmer dynamics. For a range of swimmer motions considered, the resulting solutions for the swimmer force and velocities are analysed and the applicability of the Stokes model for the swimmers in question is probed.

3.
Article in English | MEDLINE | ID: mdl-26274266

ABSTRACT

We perform two high-resolution direct numerical simulations of stratified turbulence for Reynolds number equal to Re≈25000 and Froude number, respectively, of Fr≈0.1 and Fr≈0.03. The flows are forced at large scale and discretized on an isotropic grid of 2048(3) points. Stratification makes the flow anisotropic and introduces two extra characteristic scales with respect to homogeneous isotropic turbulence: the buoyancy scale, L(B), and the Ozmidov scale, ℓ(oz). The former is related to the number of layers that the flow develops in the direction of gravity, and the latter is regarded as the scale at which isotropy is recovered. The values of L(B) and ℓ(oz) depend on the Froude number, and their absolute and relative amplitudes affect the repartition of energy among Fourier modes in ways that are not easy to predict. By contrasting the behavior of the two simulated flows we identify some surprising similarities: After an initial transient the two flows evolve towards comparable values of the kinetic and potential enstrophy and energy dissipation rate. This is the result of the Reynolds number being large enough in both flows for the Ozmidov scale to be resolved. When properly dimensionalized, the energy dissipation rate is compatible with atmospheric observations. Further similarities emerge at large scales: The same ratio between potential and total energy (≈0.1) is spontaneously selected by the flows, and slow modes grow monotonically in both regimes, causing a slow increase of the total energy in time. The axisymmetric total energy spectrum shows a wide variety of spectral slopes as a function of the angle between the imposed stratification and the wave vector. One-dimensional energy spectra computed in the direction parallel to gravity are flat from the forcing up to buoyancy scale. At intermediate scales a ∼k(-3) parallel spectrum develops for the Fr≈0.03 run, whereas for weaker stratification, the saturation spectrum does not have enough scales to develop and instead one observes a power law compatible with Kolmogorov scaling. Finally, the spectrum of helicity is flat until L(B), as observed in the nocturnal planetary boundary layer.

4.
Article in English | MEDLINE | ID: mdl-24827327

ABSTRACT

There is a clear distinction between simple laminar and complex turbulent fluids; however, in some cases, as for the nocturnal planetary boundary layer, a stable and well-ordered flow can develop intense and sporadic bursts of turbulent activity that disappear slowly in time. This phenomenon is ill understood and poorly modeled and yet it is central to our understanding of weather and climate dynamics. We present here data from direct numerical simulations of stratified turbulence on grids of 20483 points that display the somewhat paradoxical result of measurably stronger events for more stable flows, not only in the temperature and vertical velocity derivatives as commonplace in turbulence, but also in the amplitude of the fields themselves, contrary to what happens for homogenous isotropic turbulent flows. A flow visualization suggests that the extreme values take place in Kelvin-Helmoltz overturning events and fronts that develop in the field variables. These results are confirmed by the analysis of a simple model that we present. The model takes into consideration only the vertical velocity and temperature fluctuations and their vertical derivatives. It indicates that in stably stratified turbulence, the stronger bursts can occur when the flow is expected to be more stable. The bursts are generated by a rapid nonlinear amplification of energy stored in waves and are associated with energetic interchanges between vertical velocity and temperature (or density) fluctuations in a range of parameters corresponding to the well-known saturation regime of stratified turbulence.

5.
Article in English | MEDLINE | ID: mdl-23848772

ABSTRACT

A numerical study of decaying stably stratified flows is performed. Relatively high stratification (Froude number ≈10(-2)-10(-1)) and moderate Reynolds (Re) numbers (Re≈ 3-6×10(3)) are considered and a particular emphasis is placed on the role of helicity (velocity-vorticity correlations), which is not an invariant of the nondissipative equations. The problem is tackled by integrating the Boussinesq equations in a periodic cubical domain using different initial conditions: a nonhelical Taylor-Green (TG) flow, a fully helical Beltrami [Arnold-Beltrami-Childress (ABC)] flow, and random flows with a tunable helicity. We show that for stratified ABC flows helicity undergoes a substantially slower decay than for unstratified ABC flows. This fact is likely associated to the combined effect of stratification and large-scale coherent structures. Indeed, when the latter are missing, as in random flows, helicity is rapidly destroyed by the onset of gravitational waves. A type of large-scale dissipative "cyclostrophic" balance can be invoked to explain this behavior. No production of helicity is observed, contrary to the case of rotating and stratified flows. When helicity survives in the system, it strongly affects the temporal energy decay and the energy distribution among Fourier modes. We discover in fact that the decay rate of energy for stratified helical flows is much slower than for stratified nonhelical flows and can be considered with a phenomenological model in a way similar to what is done for unstratified rotating flows. We also show that helicity, when strong, has a measurable effect on the Fourier spectra, in particular at scales larger than the buoyancy scale, for which it displays a rather flat scaling associated with vertical shear, as observed in the planetary boundary layer.

SELECTION OF CITATIONS
SEARCH DETAIL
...