Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(13): 9261-9271, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38517949

ABSTRACT

Despite considerable recent advances already made in developing chemically circular polymers (CPs), the current framework predominantly focuses on CPs with linear-chain structures of different monomer types. As polymer properties are determined by not only composition but also topology, manipulating the topology of the single-monomer-based CP systems from linear-chain structures to architecturally complex polymers could potentially modulate the resulting polymer properties without changing the chemical composition, thereby advancing the concept of monomaterial product design. To that end, here, we introduce a chemically circular hyperbranched polyester (HBPE), synthesized by a mixed chain-growth and step-growth polymerization of a rationally designed bicyclic lactone with a pendent hydroxyl group (BiLOH). This HBPE exhibits full chemical recyclability despite its architectural complexity, showing quantitative selectivity for regeneration of BiLOH, via a unique cascade depolymerization mechanism. Moreover, distinct differences in materials properties and performance arising from topological variations between HBPE, hb-PBiLOH, and its linear analogue, l-PBiLOH, have been revealed where generally the branched structure led to more favorable interchain interactions, and topology-amplified optical activity has also been observed for chiral (1S, 4S, 5S)-hb-PBiLOH. More intriguingly, depolymerization of l-PBiLOH proceeds through an unexpected, initial topological transformation to the HBPE polymer, followed by the faster cascade depolymerization pathway adopted by hb-PBiLOH. Overall, these results demonstrate that CP design can go beyond typical linear polymers, and rationally redesigned, architecturally complex polymers for their unique properties may synergistically impart advantages in topology-augmented depolymerization acceleration and selectivity for exclusive monomer regeneration.

2.
Macromolecules ; 56(21): 8547-8557, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38024155

ABSTRACT

A necessary transformation for a sustainable economy is the transition from fossil-derived plastics to polymers derived from biomass and waste resources. While renewable feedstocks can enhance material performance through unique chemical moieties, probing the vast material design space by experiment alone is not practically feasible. Here, we develop a machine-learning-based tool, PolyID, to reduce the design space of renewable feedstocks to enable efficient discovery of performance-advantaged, biobased polymers. PolyID is a multioutput, graph neural network specifically designed to increase accuracy and to enable quantitative structure-property relationship (QSPR) analysis for polymers. It includes a novel domain-of-validity method that was developed and applied to demonstrate how gaps in training data can be filled to improve accuracy. The model was benchmarked with both a 20% held-out subset of the original training data and 22 experimentally synthesized polymers. A mean absolute error for the glass transition temperatures of 19.8 and 26.4 °C was achieved for the test and experimental data sets, respectively. Predictions were made on polymers composed of monomers from four databases that contain biologically accessible small molecules: MetaCyc, MINEs, KEGG, and BiGG. From 1.4 × 106 accessible biobased polymers, we identified five poly(ethylene terephthalate) (PET) analogues with predicted improvements to thermal and transport performance. Experimental validation for one of the PET analogues demonstrated a glass transition temperature between 85 and 112 °C, which is higher than PET and within the predicted range of the PolyID tool. In addition to accurate predictions, we show how the model's predictions are explainable through analysis of individual bond importance for a biobased nylon. Overall, PolyID can aid the biobased polymer practitioner to navigate the vast number of renewable polymers to discover sustainable materials with enhanced performance.

3.
Sci Adv ; 9(47): eadi1735, 2023 11 24.
Article in English | MEDLINE | ID: mdl-37992173

ABSTRACT

Cross-linked elastomers are stretchable materials that typically are not recyclable or biodegradable. Medium-chain-length polyhydroxyalkanoates (mcl-PHAs) are soft and ductile, making these bio-based polymers good candidates for biodegradable elastomers. Elasticity is commonly imparted by a cross-linked network structure, and covalent adaptable networks have emerged as a solution to prepare recyclable thermosets via triggered rearrangement of dynamic covalent bonds. Here, we develop biodegradable and recyclable elastomers by chemically installing the covalent adaptable network within biologically produced mcl-PHAs. Specifically, an engineered strain of Pseudomonas putida was used to produce mcl-PHAs containing pendent terminal alkenes as chemical handles for postfunctionalization. Thiol-ene chemistry was used to incorporate boronic ester (BE) cross-links, resulting in PHA-based vitrimers. mcl-PHAs cross-linked with BE at low density (<6 mole %) affords a soft, elastomeric material that demonstrates thermal reprocessability, biodegradability, and denetworking at end of life. The mechanical properties show potential for applications including adhesives and soft, biodegradable robotics and electronics.


Subject(s)
Polyhydroxyalkanoates , Pseudomonas putida , Polyhydroxyalkanoates/chemistry , Pseudomonas putida/genetics , Elasticity , Elastomers
4.
Science ; 382(6668): 310-314, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37856598

ABSTRACT

Polyolefins are the most important and largest volume plastics produced. Unfortunately, the enormous use of plastics and lack of effective disposal or recycling options have created a plastic waste catastrophe. In this work, we report an approach to create chemically recyclable polyolefin-like materials with diverse mechanical properties through the construction of multiblock polymers from hard and soft oligomeric building blocks synthesized with ruthenium-mediated ring-opening metathesis polymerization of cyclooctenes. The multiblock polymers exhibit broad mechanical properties, spanning elastomers to plastomers to thermoplastics, while integrating a high melting transition temperature (Tm) and low glass transition temperature (Tg), making them suitable for use across diverse applications (Tm as high as 128°C and Tg as low as -60°C). After use, the different plastics can be combined and efficiently deconstructed back to the fundamental hard and soft building blocks for separation and repolymerization to realize a closed-loop recycling process.

5.
Science ; 381(6658): 666-671, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37561876

ABSTRACT

Conversion of plastic wastes to fatty acids is an attractive means to supplement the sourcing of these high-value, high-volume chemicals. We report a method for transforming polyethylene (PE) and polypropylene (PP) at ~80% conversion to fatty acids with number-average molar masses of up to ~700 and 670 daltons, respectively. The process is applicable to municipal PE and PP wastes and their mixtures. Temperature-gradient thermolysis is the key to controllably degrading PE and PP into waxes and inhibiting the production of small molecules. The waxes are upcycled to fatty acids by oxidation over manganese stearate and subsequent processing. PP ꞵ-scission produces more olefin wax and yields higher acid-number fatty acids than does PE ꞵ-scission. We further convert the fatty acids to high-value, large-market-volume surfactants. Industrial-scale technoeconomic analysis suggests economic viability without the need for subsidies.

6.
J Am Chem Soc ; 144(12): 5366-5376, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35290039

ABSTRACT

Aliphatic polyamides, or nylons, are typically highly crystalline and thermally robust polymers used in high-performance applications. Nylon 6, a high-ceiling-temperature (HCT) polyamide from ε-caprolactam, lacks expedient chemical recyclability, while low-ceiling temperature (LCT) nylon 4 from pyrrolidone exhibits complete chemical recyclability, but it is thermally unstable and not melt-processable. Here, we introduce a hybrid nylon, nylon 4/6, based on a bicyclic lactam composed of both HCT ε-caprolactam and LCT pyrrolidone motifs in a hybridized offspring structure. Hybrid nylon 4/6 overcomes trade-offs in (de)polymerizability and performance properties of the parent nylons, exhibiting both excellent polymerization and facile depolymerization characteristics. This stereoregular polyamide forms nanocrystalline domains, allowing optical clarity and high thermal stability, however, without displaying a melting transition before decomposition. Of a series of statistical copolymers comprising nylon 4/6 and nylon 4, a 50/50 copolymer achieves the greatest synergy in both reactivity and polymer properties of each homopolymer, offering an amorphous nylon with favorable properties, including optical clarity, a high glass transition temperature, melt processability, and full chemical recyclability.


Subject(s)
Caprolactam , Nylons , Lactams/chemistry , Nylons/chemistry , Polymerization , Pyrrolidinones
7.
Annu Rev Chem Biomol Eng ; 13: 301-324, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35320697

ABSTRACT

There is an urgent need for new technologies to enable circularity for synthetic polymers, spurred by the accumulation of waste plastics in landfills and the environment and the contributions of plastics manufacturing to climate change. Chemical recycling is a promising means to convert waste plastics into molecular intermediates that can be remanufactured into new products. Given the growing interest in the development of new chemical recycling approaches, it is critical to evaluate the economics, energy use, greenhouse gas emissions, and other life cycle inventory metrics for emerging processes,relative to the incumbent, linear manufacturing practices employed today. Here we offer specific definitions for classes of chemical recycling and upcycling and describe general process concepts for the chemical recycling of mixed plastics waste. We present a framework for techno-economic analysis and life cycle assessment for both closed- and open-loop chemical recycling. Rigorous application of these process analysis tools will be required to enable impactful solutions for the plastics waste problem.


Subject(s)
Plastics , Recycling , Plastics/chemistry , Polymers
8.
ChemSusChem ; 15(1): e202101932, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34587366

ABSTRACT

There is keen interest to develop new technologies to recycle the plastic poly(ethylene terephthalate) (PET). To this end, the use of PET-hydrolyzing enzymes has shown promise for PET deconstruction to its monomers, terephthalate (TPA) and ethylene glycol (EG). Here, the Ideonella sakaiensis PETase wild-type enzyme was compared to a previously reported improved variant (W159H/S238F). The thermostability of each enzyme was compared and a 1.45 Šresolution structure of the mutant was described, highlighting changes in the substrate binding cleft compared to the wild-type enzyme. Subsequently, the performance of the wild-type and variant enzyme was compared as a function of temperature, substrate morphology, and reaction mixture composition. These studies showed that reaction temperature had the strongest influence on performance between the two enzymes. It was also shown that both enzymes achieved higher levels of PET conversion for substrates with moderate crystallinity relative to amorphous substrates. Finally, the impact of product accumulation on reaction progress was assessed for the hydrolysis of both PET and bis(2-hydroxyethyl) terephthalate (BHET). Each enzyme displayed different inhibition profiles to mono(2-hydroxyethyl) terephthalate (MHET) and TPA, while both were sensitive to inhibition by EG. Overall, this study highlights the importance of reaction conditions, substrate selection, and product accumulation for catalytic performance of PET-hydrolyzing enzymes, which have implications for enzyme screening in the development of enzyme-based polyester recycling.


Subject(s)
Hydrolases , Polyethylene Terephthalates , Hydrolysis , Plastics , Recycling
9.
ChemSusChem ; 15(1): e202102517, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34914860

ABSTRACT

Invited for this month's cover is the BOTTLE Consortium, featuring Gregg Beckham's laboratory from NREL and John McGeehan's laboratory from the University of Portsmouth. The cover image shows the application of poly(ethylene terephthalate) (PET) hydrolase enzymes on post-consumer waste plastic, towards the development of an enzymatic PET recycling strategy. The Full Paper itself is available at 10.1002/cssc.202101932.


Subject(s)
Burkholderiales , Hydrolases , Plastics , Polyethylene Terephthalates , Recycling
10.
Metab Eng ; 67: 250-261, 2021 09.
Article in English | MEDLINE | ID: mdl-34265401

ABSTRACT

Poly(ethylene terephthalate) (PET) is the most abundantly consumed synthetic polyester and accordingly a major source of plastic waste. The development of chemocatalytic approaches for PET depolymerization to monomers offers new options for open-loop upcycling of PET, which can leverage biological transformations to higher-value products. To that end, here we perform four sequential metabolic engineering efforts in Pseudomonas putida KT2440 to enable the conversion of PET glycolysis products via: (i) ethylene glycol utilization by constitutive expression of native genes, (ii) terephthalate (TPA) catabolism by expression of tphA2IIA3IIBIIA1II from Comamonas and tpaK from Rhodococcus jostii, (iii) bis(2-hydroxyethyl) terephthalate (BHET) hydrolysis to TPA by expression of PETase and MHETase from Ideonella sakaiensis, and (iv) BHET conversion to a performance-advantaged bioproduct, ß-ketoadipic acid (ßKA) by deletion of pcaIJ. Using this strain, we demonstrate production of 15.1 g/L ßKA from BHET at 76% molar yield in bioreactors and conversion of catalytically depolymerized PET to ßKA. Overall, this work highlights the potential of tandem catalytic deconstruction and biological conversion as a means to upcycle waste PET.


Subject(s)
Polyethylene Terephthalates , Pseudomonas putida , Adipates , Burkholderiales , Ethylenes , Hydrolases , Phthalic Acids , Pseudomonas putida/genetics , Rhodococcus
11.
Proc Natl Acad Sci U S A ; 117(41): 25476-25485, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32989159

ABSTRACT

Plastics pollution represents a global environmental crisis. In response, microbes are evolving the capacity to utilize synthetic polymers as carbon and energy sources. Recently, Ideonella sakaiensis was reported to secrete a two-enzyme system to deconstruct polyethylene terephthalate (PET) to its constituent monomers. Specifically, the I. sakaiensis PETase depolymerizes PET, liberating soluble products, including mono(2-hydroxyethyl) terephthalate (MHET), which is cleaved to terephthalic acid and ethylene glycol by MHETase. Here, we report a 1.6 Å resolution MHETase structure, illustrating that the MHETase core domain is similar to PETase, capped by a lid domain. Simulations of the catalytic itinerary predict that MHETase follows the canonical two-step serine hydrolase mechanism. Bioinformatics analysis suggests that MHETase evolved from ferulic acid esterases, and two homologous enzymes are shown to exhibit MHET turnover. Analysis of the two homologous enzymes and the MHETase S131G mutant demonstrates the importance of this residue for accommodation of MHET in the active site. We also demonstrate that the MHETase lid is crucial for hydrolysis of MHET and, furthermore, that MHETase does not turnover mono(2-hydroxyethyl)-furanoate or mono(2-hydroxyethyl)-isophthalate. A highly synergistic relationship between PETase and MHETase was observed for the conversion of amorphous PET film to monomers across all nonzero MHETase concentrations tested. Finally, we compare the performance of MHETase:PETase chimeric proteins of varying linker lengths, which all exhibit improved PET and MHET turnover relative to the free enzymes. Together, these results offer insights into the two-enzyme PET depolymerization system and will inform future efforts in the biological deconstruction and upcycling of mixed plastics.


Subject(s)
Bacterial Proteins/metabolism , Burkholderiales/enzymology , Plastics/metabolism , Protein Engineering/methods , Models, Molecular , Mutation , Plastics/chemistry , Polyethylene Terephthalates/chemistry , Polyethylene Terephthalates/metabolism , Protein Conformation , Protein Domains , Substrate Specificity
12.
Proc Natl Acad Sci U S A ; 115(19): E4350-E4357, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29666242

ABSTRACT

Poly(ethylene terephthalate) (PET) is one of the most abundantly produced synthetic polymers and is accumulating in the environment at a staggering rate as discarded packaging and textiles. The properties that make PET so useful also endow it with an alarming resistance to biodegradation, likely lasting centuries in the environment. Our collective reliance on PET and other plastics means that this buildup will continue unless solutions are found. Recently, a newly discovered bacterium, Ideonella sakaiensis 201-F6, was shown to exhibit the rare ability to grow on PET as a major carbon and energy source. Central to its PET biodegradation capability is a secreted PETase (PET-digesting enzyme). Here, we present a 0.92 Å resolution X-ray crystal structure of PETase, which reveals features common to both cutinases and lipases. PETase retains the ancestral α/ß-hydrolase fold but exhibits a more open active-site cleft than homologous cutinases. By narrowing the binding cleft via mutation of two active-site residues to conserved amino acids in cutinases, we surprisingly observe improved PET degradation, suggesting that PETase is not fully optimized for crystalline PET degradation, despite presumably evolving in a PET-rich environment. Additionally, we show that PETase degrades another semiaromatic polyester, polyethylene-2,5-furandicarboxylate (PEF), which is an emerging, bioderived PET replacement with improved barrier properties. In contrast, PETase does not degrade aliphatic polyesters, suggesting that it is generally an aromatic polyesterase. These findings suggest that additional protein engineering to increase PETase performance is realistic and highlight the need for further developments of structure/activity relationships for biodegradation of synthetic polyesters.


Subject(s)
Bacterial Proteins/chemistry , Burkholderiales/enzymology , Esterases/chemistry , Polyethylene Terephthalates/chemistry , Bacterial Proteins/genetics , Burkholderiales/genetics , Crystallography, X-Ray , Esterases/genetics , Protein Engineering , Substrate Specificity
13.
ChemSusChem ; 11(11): 1768-1780, 2018 Jun 11.
Article in English | MEDLINE | ID: mdl-29687956

ABSTRACT

cis,cis-Muconic acid is a platform bio-based chemical that can be upgraded to drop-in commodity and novel monomers. Among the possible drop-in products, dimethyl terephthalate can be synthesized via esterification, isomerization, Diels-Alder cycloaddition, and dehydrogenation. The isomerization of cis,cis-dimethyl muconate (ccDMM) to the trans,trans-form (ttDMM) can be catalyzed by iodine; however, studies have yet to address (i) the mechanism and reaction barriers unique to DMM, and (ii) the influence of solvent, potential for catalyst recycle, and recovery of high-purity ttDMM. To address this gap, we apply a joint computational and experimental approach to investigate iodine-catalyzed isomerization of DMM. Density functional theory calculations identified unique regiochemical considerations owing to the large number of halogen-diene coordination schemes. Both transition state theory and experiments estimate significant barrier reductions with photodissociated iodine. Solvent selection was critical for rapid kinetics, likely because of solvent complexation with iodine. Under select conditions, ttDMM yields of 95 % were achieved in <1 h with methanol, followed by high purity recovery (>98 %) with crystallization. Lastly, post-reaction iodine can be recovered and recycled with minimal loss of activity. Overall, these findings provide new insight into the mechanism and conditions necessary for DMM isomerization with iodine to advance the state-of-the-art for bio-based chemicals.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 90(5-1): 052603, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25493809

ABSTRACT

The first ever molecular-scale simulation of cross-flow migration effects in dense polymer melts is presented; simulations for both unentangled and entangled chains are presented. At quiescence a small depletion next to the wall for the segmental densities of longer chains is present, a corresponding excess exists about one-half a radii of gyration away from the wall, and uniform values are observed further from the wall. In shear flow the melts exhibit similar behavior as the quiescent case; a constant shear rate across the gap does not induce chain length based migration. In contradistinction, parabolic flow (where gradients in shear rate are present) causes profound migration for both unentangled and entangled melts. Mapping onto polyethylene and calculating stress shows the system is far below the stress required to break chains. Accordingly, our findings are consistent with flow induced migration mechanisms predominating over competing chain degradation mechanisms thus resolving a 40 year old controversy.

15.
J Chem Phys ; 141(21): 214905, 2014 Dec 07.
Article in English | MEDLINE | ID: mdl-25481167

ABSTRACT

New insight into the molecular scale details of polymer melts under confined conditions is obtained from the first dynamic Monte Carlo study incorporating polydispersity. While confinement effects on polymers have been widely explored, little work exists on the effects of polydispersity. This is surprising given the near universal presence of polydispersity in physical systems. To address this shortcoming, a new variation of on-lattice dynamic Monte Carlo simulation is used to provide an understanding of how polydispersity alters confinement effects on polymer melts. Polymer melts of varying polydispersity are simulated between two hard walls (surface interaction parameter, χ(s) = 0) of variable spacing. As plate spacing decreases, polymer chains adopt conformations in which the end-to-end vector is parallel to the hard walls. However, polydisperse melts with the same length average molecular weight, N(w) (which is analogous to the weight average molecular weight, M(w)) show reduced orientation effects. Polydispersity provides greater degrees of freedom; that is, there are more configurations for the system to adopt to accommodate confinement without ordering. At plate spacings of four radii of gyration and only modest polydispersity index values (polydispersity index, PDI = 1.42), the order parameters are reduced by 15% compared to the monodisperse case. The same PDI value corresponds to a 10% reduction in the perturbations of the end-to-end vector and Rouse time. Interestingly, length-based migration effects are observed. Longer chains reside away from the walls and the shorter chains are found nearer the walls; at equilibrium there is a molecular weight based fractionation across the gap. Confinement also leads to a "speeding up" of the polymer dynamics. Altered dynamic phenomena include a reduction of the Rouse time for the same average molecular weight and an altered scaling behavior with plate spacing. Reptation times are also reduced and polydispersity smoothes out the transitions between different scaling regimes. The overall picture that emerges is not unexpected­polydispersity profoundly affects the behavior of confined homopolymers.

16.
Phys Rev Lett ; 110(17): 176001, 2013 Apr 26.
Article in English | MEDLINE | ID: mdl-23679746

ABSTRACT

The first molecular scale simulation of highly entangled polydisperse homopolymers that is capable of capturing all three regions--no slip, weak slip, and strong slip--of the hydrodynamic boundary condition is presented. An on-lattice dynamic Monte Carlo technique capable of correctly capturing both unentangled and entangled polymer dynamics is used to study the molecular details of wall slip phenomena for homopolymers and energetically neutral walls. For unentangled chains (those exhibiting Rouse dynamics) weak slip is not present but evidence of strong slip is manifest at very high shear rates. For entangled chains (of sufficient length to exhibit reptation dynamics), both weak and strong slip are observed. Consistent with numerous experimental studies, disentanglement and cohesive failure occur at high shear rates. Disentanglement is clearly evidenced in a nonlinear velocity profile that exhibits shear banding, in an excess of chain ends at the slip plane, and perhaps most importantly in a nonmonotonic stress versus shear rate response. The chain end density exhibits a pretransitional periodicity prior to disentanglement. Unentangled Rouse chains do not show this pretransitional response or a bifurcation in their stress versus shear rate response. Finally, it is shown that when polydispersity is introduced, slip phenomena are severely reduced and the inherent constitutive bifurcation is limited to a small region. Predictions are in post facto agreement with many experiments, are distinct from existing results obtained using molecular dynamics simulation techniques, and shed light on fundamental mechanisms of polymer wall slip.

SELECTION OF CITATIONS
SEARCH DETAIL
...