Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Plasmonics ; 9: 581-593, 2014.
Article in English | MEDLINE | ID: mdl-24834019

ABSTRACT

The amplification of Raman signals of the heteroaromatic cation 1-(N-methylpyrid-4-yl)-2-(N-methylpyrrol-2-yl)ethylene (PEP+)) bound to Au nanorods (NRs) was investigated at different excitation wavelengths to study the effect of the laser resonance with the absorption band of the PEP+ moiety and with the two plasmon oscillation modes of the NR. Two different PEP+ derivatives, differing in the length of the alkyl chain bearing the anchoring group, were used as target molecules. Raman spectra obtained exciting at 514 or at 785 nm (i.e., exciting the transverse or the longitudinal plasmon band) present a higher intensity than that at 488 nm suggesting a higher Raman amplification when the laser excitation wavelength is resonant with one of the two plasmon modes. Moreover, considering results of Discrete Dipole Approximation (DDA) calculations of the local field generated at the NR surface when either the transverse or the longitudinal plasmon modes are excited, we deduced that the resonance condition of the 514-nm laser excitation with the absorption band of the dye strongly contributes to the amplification of the Raman signal.

2.
Phys Chem Chem Phys ; 12(41): 13692-8, 2010 Nov 07.
Article in English | MEDLINE | ID: mdl-20871871

ABSTRACT

The nonlinear optical absorption of gold nanoshells (Au NSs) of different size, in water, was investigated using open aperture z-scan technique with femtosecond laser pulses at 806 nm. It is found that, in general, NSs behave as saturable absorbers. The level of saturation depends on the Au NSs structure and precisely on the ratio between the core size and shell thickness. The measured values of the nonlinear absorption coefficient show a dependence on both the repetition rate and the pulse energy. An average value of the nonlinear absorption coefficient ß = -4.5 ± 1.0 × 10(-11) cm W(-1) is obtained from z-scan data of core-shell particles of inner and outer radius 95 and 110 nm, respectively, measured at 20 Hz repetition rate in the energy range 120-300 nJ.

SELECTION OF CITATIONS
SEARCH DETAIL