Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 4(4): 1104-13, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18180208

ABSTRACT

This work describes the evaluation of a glass ceramic (55S41C4P-1300) as a potential substrate for bone tissue engineering. For that purpose, the capacity of mesenchymal stem cells (MSCs), isolated from rabbit bone marrow, to adhere, proliferate and differentiate into osteoblast (OBs) with or without 55S41C4P-1300 was investigated. Two types of culture medium, i.e. growth medium (GM) and osteogenic medium (OM), were evaluated. The bioactive 55S41C4P-1300, containing pseudowollastonite, wollastonite, tricalcium phosphate and crystoballite as crystalline phases, was obtained by heat treatment of a sol-gel glass (55SiO(2), 41CaO, 4P(2)O(5) (mol.%)) at 1300 degrees C. The results showed that the MSCs adhered, spread, proliferated and produced mineralized extracellular matrix on 55S41C4P-1300 regardless of the culture medium used. As the same time, they showed an osteoblastic phenotype, and this phenomenon was accompanied by the gradual diminution of the marker CD90 expression. The 55S41C4P-1300 was able to induce the differentiation of MSCs into OBs in the same way as OM without glass ceramic. This effect increased with the combination of 55S41C4P-1300 with OM. The glass ceramic evaluated in this work is bioactive, cytocompatible and capable of promoting the differentiation of MSCs into OBs. For that reason, it could be regarded as a suitable matrix in tissue engineering for bone tissue regeneration.


Subject(s)
Ceramics/pharmacology , Glass/chemistry , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Animals , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Culture Media , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Fluorescence , Mesenchymal Stem Cells/ultrastructure , Microscopy, Electron, Scanning , Osteocalcin/metabolism , Rabbits , Spectrum Analysis , Thy-1 Antigens/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...