Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Naunyn Schmiedebergs Arch Pharmacol ; 396(7): 1535-1545, 2023 07.
Article in English | MEDLINE | ID: mdl-36790483

ABSTRACT

Morphine is among the most powerful analgesics and pain-relieving agents. However, its addictive properties limit their medical use because patients may be susceptible to abuse and reinstatement. Morphine addiction occurs because of dopamine release in the mesolimbic brain area, implying in an increase in oxidative stress. Ferulic acid (FA), a phenolic phytochemical found in a variety of foods, has been reported to exert antioxidant and neuroprotective effects; however, its low bioavailability makes its nano-encapsulated form a promising alternative. This study aimed to evaluate the protective effects of a novel nanosystem with FA on morphine reinstatement and the consequent molecular neuroadaptations and oxidative status in the mesolimbic region. Rats previously exposed to morphine in conditioned place preference (CPP) paradigm were treated with ferulic acid-loaded nanocapsules (FA-Nc) or nonencapsulated FA during morphine-preference extinction. Following the treatments, animals were re-exposed to morphine to induce the reinstatement. While morphine-preference extinction was comparable among all experimental groups, FA-Nc treatment prevented morphine reinstatement. In the dorsal striatum, while morphine exposure increased lipid peroxidation (LP) and reactive species (RS), FA-Nc decreased LP and FA decreased RS levels. Morphine exposure increased the dopaminergic markers (D1R, D3R, DAT) and ΔFosB immunoreactivity in the ventral striatum; however, FA-Nc treatment decreased D1R, D3R, and ΔFosB and increased D2R, DAT, and NRF2. In conclusion, FA-Nc treatment prevented the morphine reinstatement, promoted antioxidant activity, and modified the dopaminergic neurotransmission, NRF2, and ΔFosB, what may indicate a neuroprotective and antioxidant role of this nanoformulation.


Subject(s)
Dopamine , Morphine , Rats , Animals , Morphine/pharmacology , NF-E2-Related Factor 2 , Antioxidants/pharmacology , Brain
2.
Pharmacol Biochem Behav ; 218: 173427, 2022 07.
Article in English | MEDLINE | ID: mdl-35810923

ABSTRACT

In psychostimulant drug addiction, relapse is the most concerning outcome to be managed, considering there is no approved treatment for this neuropsychiatric condition. Here, we investigated the effects of the CBD treatment on the relapse behavior triggered by stress, after being submitted to the amphetamine (AMPH)-induced conditioned place preference (CPP) in rats. To elucidate the mechanisms of action underlying the CBD treatment, we evaluated the neuroadaptations on dopaminergic and endocannabinoid targets in the ventral striatum (VS) and ventral tegmental area (VTA) of the brain. Animals received d,l-AMPH (4 mg/kg, i.p.) or vehicle in the CPP paradigm for 8 days. Following the first CPP test, animals were treated with CBD (10 mg/kg, i.p.) or its vehicle for 5 days and subsequently submitted to forced swim stress protocol to induce AMPH-CPP relapse. Behavioral findings showed that CBD treatment prevented AMPH-reinstatement, also exerting anxiolytic activity. At the molecular level, in the VTA, CBD restored the CB1R levels decreased by AMPH-exposure, increased NAPE-PLD, and decreased FAAH levels. In the VS, the increase of D1R and D2R, as well as the decrease of DAT levels induced by AMPH were restored by CBD treatment. The current outcomes evidence a substantial preventive action of the CBD on the AMPH-reinstatement evoked by stress, also involving neuroadaptations in both dopaminergic and endocannabinoid systems in brain areas closely involved in the addiction. Although further studies are needed, these findings support the therapeutic potential of CBD in AMPH-relapse prevention.


Subject(s)
Amphetamine , Cannabidiol , Amphetamine/pharmacology , Animals , Cannabidiol/pharmacology , Dopamine , Endocannabinoids/pharmacology , Rats , Recurrence
3.
Eur Neuropsychopharmacol ; 50: 23-33, 2021 09.
Article in English | MEDLINE | ID: mdl-33951588

ABSTRACT

Amphetamine (AMPH) is an addictive psychostimulant highly used worldwide and its consumption is related to neurotoxic effects. Currently, there is no pharmacotherapy approved for treating AMPH or other psychostimulant drug addiction. Different studies have shown promising properties of cannabidiol (CBD) for treating many neurological and psychiatric diseases, and recently, CBD is being considered a potential strategy for the treatment of drug addiction disorders. Thus, we investigated possible CBD beneficial effects on relapse symptoms following AMPH re-exposure considering drug relapse is the most difficult clinical factor to control during addiction treatment. Rats received d,l-AMPH (4 mg/kg, i.p.) or vehicle in the conditioned place preference (CPP) paradigm (8 days), when each experimental group was re-assigned to receive CBD at two different doses (5 or 10 mg/kg, i.p) or control, for 5 days. Subsequently, animals were re-exposed to AMPH-CPP (4 mg/kg, i.p.) for 3 additional days to assess relapse behavior. Besides locomotor and anxiety-like behaviors, dopaminergic molecular parameters were quantified in both prefrontal cortex and ventral striatum. Regarding molecular levels, CBD modulated at basal levels the dopaminergic targets (D1R, D2R, DAT, and TH) in the assessed brain areas, preventing AMPH relapse and decreasing anxiety-like behavior per se and in AMPH-CPP animals. The current findings give evidence about CBD-induced AMPH-relapse prevention, which may be linked to dopaminergic mesocorticolimbic system modulation. Although future and clinical studies are needed, our outcomes show that CBD may be a useful alternative to prevent AMPH relapse.


Subject(s)
Amphetamine-Related Disorders , Cannabidiol , Central Nervous System Stimulants , Amphetamine/pharmacology , Amphetamine-Related Disorders/therapy , Animals , Brain/metabolism , Cannabidiol/pharmacology , Central Nervous System Stimulants/pharmacology , Dopamine , Rats , Rats, Wistar , Receptors, Dopamine D2/metabolism , Recurrence
SELECTION OF CITATIONS
SEARCH DETAIL
...