Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Polym Chem ; 8(42): 6506-6519, 2017 Nov 14.
Article in English | MEDLINE | ID: mdl-29422955

ABSTRACT

The mechanism of atom transfer radical polymerization (ATRP) mediated by sodium dithionite (Na2S2O4), with CuIIBr2/Me6TREN as catalyst (Me6TREN: tris[2-(dimethylamino)ethyl]amine)) in ethanol/water mixtures, was investigated experimentally and by kinetic simulations. A kinetic model was proposed and the rate coefficients of the relevant reactions were measured. The kinetic model was validated by the agreement between experimental and simulated results. The results indicated that the polymerization followed the SARA ATRP mechanism, with a SO2•- radical anion derived from Na2S2O4, acting as both supplemental activator (SA) of alkyl halides and reducing agent (RA) for CuII/L to regenerate the main activator CuI/L. This is similar to the reversible-deactivation radical polymerization (RDRP) procedure conducted in the presence of Cu0. The electron transfer from SO2•-, to either CuIIBr2/Me6TREN or R-Br initiator, appears to follow an outer sphere electron transfer (OSET) process. The developed kinetic model was used to study the influence of targeted degree of polymerization, concentration of CuIIBr2/Me6TREN and solubility of Na2S2O4 on the level of polymerization control. The presence of small amounts of water in the polymerization mixtures slightly increased the reactivity of the CuI/L complex, but markedly increased the reactivity of sulfites.

SELECTION OF CITATIONS
SEARCH DETAIL
...