Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-22173005

ABSTRACT

The performance of a pilot scale packed differential contactor was evaluated for the continuous counter-current aqueous two-phase extraction (ATPE) of human immunoglobulin G (IgG) from a Chinese hamster ovary (CHO) cells supernatant (CS) enriched with pure protein. Preliminary studies have been firstly performed in order to select the dispersed phase (phosphate-rich or polyethylene glycol 3350 Da (PEG)-rich phase) and the column packing material. The PEG-rich phase has been selected as the dispersed phase and the stainless steel as the preferred material for the column packing bed since it was not wetted preferentially by the selected dispersed phase. Hydrodynamic studies have been also performed, and the experimental results were successfully adjusted to the Richardson-Zaki and Mísek equations, typically used for the conventional organic-aqueous two-phase systems. An experimental set-up combining the packed column with a pump mixer-settler stage showed to have the best performance and to be advantageous when compared to the IgG batch extraction. An IgG recovery yield of 85% could be obtained with about 50% of total contaminants and more than 85% of contaminant proteins removal. Mass transfer studies have revealed that the mass transfer was controlled by the PEG-rich phase. A higher efficiency could be obtained when using an extra pump mixer-settler stage and higher flow rates.


Subject(s)
Immunoglobulin G/isolation & purification , Liquid-Liquid Extraction/methods , Animals , CHO Cells , Chromatography, Affinity , Chromatography, Gel , Cricetinae , Cricetulus , Equipment Design , Humans , Hydrodynamics , Immunoglobulin G/analysis , Immunoglobulin G/chemistry , Liquid-Liquid Extraction/instrumentation , Models, Theoretical , Polyethylene Glycols , Sodium Chloride
2.
Biotechnol Adv ; 29(6): 559-67, 2011.
Article in English | MEDLINE | ID: mdl-21501680

ABSTRACT

The biotech industry is, nowadays, facing unparalleled challenges due to the enhanced demand for biotechnology-based human therapeutic products, such as monoclonal antibodies (mAbs). This has led companies to improve substantially their upstream processes, with the yield of monoclonals increasing to titers never seen before. The downstream processes have, however, been overlooked, leading to a production bottleneck. Although chromatography remains the workhorse of most purification processes, several limitations, such as low capacity, scale-related packing problems, low chemical and proteolytic stability and resins' high cost, have arisen. Aqueous two-phase extraction (ATPE) has been successfully revisited as a valuable alternative for the capture of antibodies. One of the important remaining questions for this technology to be adopted by the biotech industries is, now, how it compares to the currently established platforms in terms of costs and environmental impact. In this report, the economical and environmental sustainability of the aqueous two-phase extraction process is evaluated and compared to the currently established protein A affinity chromatography. Accordingly, the ATPE process was shown to be considerably advantageous in terms of process economics, especially when processing high titer cell culture supernatants. This alternative process is able to purify continuously the same amount of mAbs reducing the annual operating costs from 14.4 to 8.5 million (US$/kg) when cell culture supernatants with mAb titers higher than 2.5 g/L are processed.


Subject(s)
Biotechnology/methods , Drug Industry/methods , Liquid-Liquid Extraction/methods , Biotechnology/economics , Chromatography, Affinity , Drug Industry/economics , Environment , Green Chemistry Technology , Humans , Liquid-Liquid Extraction/economics
3.
J Chromatogr A ; 1217(16): 2296-305, 2010 Apr 16.
Article in English | MEDLINE | ID: mdl-19962707

ABSTRACT

The number of biotechnology-based pharmaceuticals in the late-stage pipeline has been increasing more than ever. As a result, there is an enhanced demand for more efficient and cost-effective processes. During the last years, the upstream technology for the production of biopharmaceuticals has been considerably improved. Continuous discoveries in molecular biology and genetics, combined with new advances in media and feed development, have significantly increased the production titres. In order to keep up this gain, it is now essential to design new, as well as to improve the existing downstream processes that remain an unresolved bottleneck. This review evaluates several alternatives to the currently established platforms for the downstream processing biopharmaceuticals, with main focus on aqueous two-phase extraction.


Subject(s)
Biopharmaceutics/methods , Chemical Fractionation/methods , Drug Industry/methods , Proteins/isolation & purification , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/isolation & purification , Chromatography, Liquid , Protein Biosynthesis , Water/chemistry
4.
J Chromatogr A ; 1216(50): 8741-9, 2009 Dec 11.
Article in English | MEDLINE | ID: mdl-19261288

ABSTRACT

Single-stage and multi-stage strategies have been evaluated and compared for the purification of human antibodies using liquid-liquid extraction in aqueous two-phase systems (ATPSs) composed of polyethylene glycol 3350 (PEG 3350), dextran, and triethylene glycol diglutaric acid (TEG-COOH). The performance of single-stage extraction systems was firstly investigated by studying the effect of pH, TEG-COOH concentration and volume ratio on the partitioning of the different components of a Chinese hamster ovary (CHO) cells supernatant. It was observed that lower pH values and high TEG-COOH concentrations favoured the selective extraction of human immunoglobulin G (IgG) to the PEG-rich phase. Higher recovery yields, purities and percentage of contaminants removal were always achieved in the presence of the ligand, TEG-COOH. The extraction of IgG could be enhanced using higher volume ratios, however with a significant decrease in both purity and percentage of contaminants removal. The best single-stage extraction conditions were achieved for an ATPS containing 1.3% (w/w) TEG-COOH with a volume ratio of 2.2, which allowed the recovery of 96% of IgG in the PEG-rich phase with a final IgG concentration of 0.21mg/mL, a protein purity of 87% and a total purity of 43%. In order to enhance simultaneously both recovery yield and purity, a four stage cross-current operation was simulated and the corresponding liquid-liquid equilibrium (LLE) data determined. A predicted optimised scheme of a counter-current multi-stage aqueous two-phase extraction was hence described. IgG can be purified in the PEG-rich top phase with a final recovery yield of 95%, a final concentration of 1.04mg/mL and a protein purity of 93%, if a PEG/dextran ATPS containing 1.3% (w/w) TEG-COOH, 5 stages and volume ratio of 0.4 are used. Moreover, according to the LLE data of all CHO cells supernatant components, it was possible to observe that most of the cells supernatant contaminants can be removed during this extraction step leading to a final total purity of about 85%.


Subject(s)
Chemical Fractionation/methods , Immunoglobulin G/isolation & purification , Water/chemistry , Animals , CHO Cells , Chromatography, Gel , Cricetinae , Cricetulus , Glutarates/chemistry , Humans , Hydrogen-Ion Concentration , Polyethylene Glycols/chemistry , Subcellular Fractions/chemistry
5.
J Biotechnol ; 139(4): 306-13, 2009 Feb 23.
Article in English | MEDLINE | ID: mdl-19297726

ABSTRACT

The single-stage equilibrium aqueous two-phase extraction (ATPE) of human antibodies from a Chinese hamster ovary (CHO) cells supernatant was investigated. The performance of polyethylene glycol 3350 (PEG 3350)/phosphate aqueous two-phase systems (ATPS) was evaluated by studying several experimental conditions, such as pH, ionic strength, volume ratio and initial antibody concentration in the feed stock. The conditions that favoured the extraction of human immunoglobulin G (IgG) were low pH values, high NaCl concentration and high volume ratios. The percentage of contaminants removal did not depend on the pH value and NaCl concentration, increasing, however, as the volume ratio decreased. About 66% of total contaminants were removed when a volume ratio of 0.4 was used. The multi-stage equilibrium ATPE was also investigated by simulating a four stages cross-current operation in test tubes. According to the IgG equilibrium curves and respective McCabe Thiele diagrams, a predicted optimised scheme of a counter-current multi-stage ATPE was described. An IgG recovery yield of 89% and a protein purity of 75% can be achieved using a PEG/phosphate ATPS containing 10% (w/w) NaCl, five stages and a volume ratio of 0.4. This represents significant improvements in the recovery yield and purity when compared to a single-stage trial performed at the same experimental conditions, where a 61% recovery yield and 55% protein purity were attained. Based on the CHO cells supernatant components equilibrium curves, it was observed that IgG can be completely purified from the higher molecular weight (MW) components and partially purified from the lower MW components.


Subject(s)
Antibodies, Monoclonal/isolation & purification , Chemical Fractionation/methods , Animals , CHO Cells , Cricetinae , Cricetulus , Humans , Hydrogen-Ion Concentration , Osmolar Concentration , Polyethylene Glycols/chemistry , Sodium Chloride/chemistry
6.
J Chromatogr A ; 1213(2): 154-61, 2008 Dec 12.
Article in English | MEDLINE | ID: mdl-18995863

ABSTRACT

We have evaluated a process incorporating aqueous two-phase extraction, hydrophobic interaction chromatography (HIC) and size-exclusion chromatography (SEC) for the purification of human immunoglobulin G (IgG) from a Chinese hamster ovary (CHO) cell supernatant. These unit operations were chosen not only for allowing the removal of target impurities but also for facilitating the integration of different process units without the need for any conditioning step. Extraction in aqueous two-phase systems (ATPSs), composed of polyethylene glycol (PEG) and sodium citrate, allowed the concentration of the antibodies in the citrate-rich phase and the removal of the most hydrophobic compounds in the PEG-rich phase. An ATPS composed of 10% (w/w) PEG 3350 and 12% (w/w) citrate, at pH 6, allowed the recovery of IgG with a 97% yield, 41% HPLC purity and 72% protein purity. This bottom phase was then directly loaded on a phenyl-Sepharose HIC column. This intermediate purification step allowed the capture of the antibodies using a citrate mobile phase with 99% of the antibody recovered in the elution fractions, with 86% HPLC purity and 91% protein purity. Finally, SEC allowed the final polishing by removing IgG aggregates. HIC-eluted fractions were directly injected in a Superose 6 size-exclusion column affording a 100% pure IgG solution with 90% yield.


Subject(s)
Antibodies/isolation & purification , Chromatography, Gel/methods , Chromatography/methods , Animals , CHO Cells , Chemical Fractionation , Chromatography, Liquid/methods , Cricetinae , Cricetulus , Humans , Hydrophobic and Hydrophilic Interactions , Immunoglobulin G/isolation & purification
7.
J Chromatogr A ; 1162(1): 103-13, 2007 Aug 24.
Article in English | MEDLINE | ID: mdl-17568594

ABSTRACT

The partitioning of human immunoglobulin (IgG) in a polymer-polymer and polymer-salt aqueous two-phase system (ATPS) in the presence of several functionalised polyethylene glycols (PEGs) was studied. As a first approach, the partition studies were performed with pure IgG using systems in which the target protein remained in the bottom phase when the non-functionalised systems were tested. The effect of increasing functionalised PEG concentration and the type of ligand were studied. Afterwards, selectivity studies were performed with the most successful ligands first by using systems containing pure proteins and an artificial mixture of proteins and, subsequently, with systems containing a Chinese hamster ovary (CHO) cells supernatant. The PEG/phosphate ATPS was not suitable for the affinity partitioning of IgG. In the PEG/dextran ATPS, the diglutaric acid functionalised PEGs (PEG-COOH) displayed great affinity to IgG, and all IgG could be recovered in the top phase when 20% (w/w) of PEG 150-COOH and 40% (w/w) PEG 3350-COOH were used. The selectivity of these functionalised PEGs was evaluated using an artificial mixture of proteins, and PEG 3350-COOH did not show affinity to IgG in the presence of typical serum proteins such as human serum albumin and myoglobin, while in systems with PEG 150-COOH, IgG could be recovered with a yield of 91%. The best purification of IgG from the CHO cells supernatant was then achieved in a PEG/dextran ATPS in the presence of PEG 150-COOH with a recovery yield of 93%, a purification factor of 1.9 and a selectivity to IgG of 11. When this functionalised PEG was added to the ATPS, a 60-fold increase in selectivity was observed when compared to the non-functionalised systems.


Subject(s)
Chemical Fractionation/methods , Immunoglobulin G/chemistry , Immunoglobulin G/isolation & purification , Phase Transition , Animals , Chromatography, Affinity , Cricetinae , Dextrans , Humans , Models, Chemical , Osmolar Concentration , Polyethylene Glycols/chemical synthesis , Sensitivity and Specificity , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...