Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1081050, 2023.
Article in English | MEDLINE | ID: mdl-37123860

ABSTRACT

Introduction: Bees capable of performing floral sonication (or buzz-pollination) are among the most effective pollinators of blueberries. However, the quality of pollination provided varies greatly among species visiting the flowers. Consequently, the correct identification of flower visitors becomes indispensable to distinguishing the most efficient pollinators of blueberry. However, taxonomic identification normally depends on microscopic characteristics and the active participation of experts in the decision-making process. Moreover, the many species of bees (20,507 worldwide) and other insects are a challenge for a decreasing number of insect taxonomists. To overcome the limitations of traditional taxonomy, automatic classification systems of insects based on Machine-Learning (ML) have been raised for detecting and distinguishing a wide variety of bioacoustic signals, including bee buzzing sounds. Despite that, classical ML algorithms fed by spectrogram-type data only reached marginal performance for bee ID recognition. On the other hand, emerging systems from Deep Learning (DL), especially Convolutional Neural Networks (CNNs), have provided a substantial boost to classification performance in other audio domains, but have yet to be tested for acoustic bee species recognition tasks. Therefore, we aimed to automatically identify blueberry pollinating bee species based on characteristics of their buzzing sounds using DL algorithms. Methods: We designed CNN models combined with Log Mel-Spectrogram representations and strong data augmentation and compared their performance at recognizing blueberry pollinating bee species with the current state-of-the-art models for automatic recognition of bee species. Results and Discussion: We found that CNN models performed better at assigning bee buzzing sounds to their respective taxa than expected by chance. However, CNN models were highly dependent on acoustic data pre-training and data augmentation to outperform classical ML classifiers in recognizing bee buzzing sounds. Under these conditions, the CNN models could lead to automating the taxonomic recognition of flower-visiting bees of blueberry crops. However, there is still room to improve the performance of CNN models by focusing on recording samples for poorly represented bee species. Automatic acoustic recognition associated with the degree of efficiency of a bee species to pollinate a particular crop would result in a comprehensive and powerful tool for recognizing those that best pollinate and increase fruit yields.

2.
PLoS Comput Biol ; 17(9): e1009426, 2021 09.
Article in English | MEDLINE | ID: mdl-34529654

ABSTRACT

Bee-mediated pollination greatly increases the size and weight of tomato fruits. Therefore, distinguishing between the local set of bees-those that are efficient pollinators-is essential to improve the economic returns for farmers. To achieve this, it is important to know the identity of the visiting bees. Nevertheless, the traditional taxonomic identification of bees is not an easy task, requiring the participation of experts and the use of specialized equipment. Due to these limitations, the development and implementation of new technologies for the automatic recognition of bees become relevant. Hence, we aim to verify the capacity of Machine Learning (ML) algorithms in recognizing the taxonomic identity of visiting bees to tomato flowers based on the characteristics of their buzzing sounds. We compared the performance of the ML algorithms combined with the Mel Frequency Cepstral Coefficients (MFCC) and with classifications based solely on the fundamental frequency, leading to a direct comparison between the two approaches. In fact, some classifiers powered by the MFCC-especially the SVM-achieved better performance compared to the randomized and sound frequency-based trials. Moreover, the buzzing sounds produced during sonication were more relevant for the taxonomic recognition of bee species than analysis based on flight sounds alone. On the other hand, the ML classifiers performed better in recognizing bees genera based on flight sounds. Despite that, the maximum accuracy obtained here (73.39% by SVM) is still low compared to ML standards. Further studies analyzing larger recording samples, and applying unsupervised learning systems may yield better classification performance. Therefore, ML techniques could be used to automate the taxonomic recognition of flower-visiting bees of the cultivated tomato and other buzz-pollinated crops. This would be an interesting option for farmers and other professionals who have no experience in bee taxonomy but are interested in improving crop yields by increasing pollination.


Subject(s)
Bees/classification , Bees/physiology , Machine Learning , Pollination/physiology , Solanum lycopersicum/growth & development , Acoustics , Algorithms , Animals , Computational Biology , Crops, Agricultural/growth & development , Flowers/physiology , Solanum lycopersicum/physiology
3.
Int J Med Inform ; 85(1): 80-95, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26514078

ABSTRACT

BACKGROUND: Cancer is a critical disease that affects millions of people and families around the world. In 2012 about 14.1 million new cases of cancer occurred globally. Because of many reasons like the severity of some cases, the side effects of some treatments and death of other patients, cancer patients tend to be affected by serious emotional disorders, like depression, for instance. Thus, monitoring the mood of the patients is an important part of their treatment. Many cancer patients are users of online social networks and many of them take part in cancer virtual communities where they exchange messages commenting about their treatment or giving support to other patients in the community. Most of these communities are of public access and thus are useful sources of information about the mood of patients. Based on that, Sentiment Analysis methods can be useful to automatically detect positive or negative mood of cancer patients by analyzing their messages in these online communities. OBJECTIVE: The objective of this work is to present a Sentiment Analysis tool, named SentiHealth-Cancer (SHC-pt), that improves the detection of emotional state of patients in Brazilian online cancer communities, by inspecting their posts written in Portuguese language. The SHC-pt is a sentiment analysis tool which is tailored specifically to detect positive, negative or neutral messages of patients in online communities of cancer patients. We conducted a comparative study of the proposed method with a set of general-purpose sentiment analysis tools adapted to this context. METHODS: Different collections of posts were obtained from two cancer communities in Facebook. Additionally, the posts were analyzed by sentiment analysis tools that support the Portuguese language (Semantria and SentiStrength) and by the tool SHC-pt, developed based on the method proposed in this paper called SentiHealth. Moreover, as a second alternative to analyze the texts in Portuguese, the collected texts were automatically translated into English, and submitted to sentiment analysis tools that do not support the Portuguese language (AlchemyAPI and Textalytics) and also to Semantria and SentiStrength, using the English option of these tools. Six experiments were conducted with some variations and different origins of the collected posts. The results were measured using the following metrics: precision, recall, F1-measure and accuracy RESULTS: The proposed tool SHC-pt reached the best averages for accuracy and F1-measure (harmonic mean between recall and precision) in the three sentiment classes addressed (positive, negative and neutral) in all experimental settings. Moreover, the worst accuracy value (58%) achieved by SHC-pt in any experiment is 11.53% better than the greatest accuracy (52%) presented by other addressed tools. Finally, the worst average F1 (48.46%) reached by SHC-pt in any experiment is 4.14% better than the greatest average F1 (46.53%) achieved by other addressed tools. Thus, even when we compare the SHC-pt results in complex scenario versus others in easier scenario the SHC-pt is better. CONCLUSIONS: This paper presents two contributions. First, it proposes the method SentiHealth to detect the mood of cancer patients that are also users of communities of patients in online social networks. Second, it presents an instantiated tool from the method, called SentiHealth-Cancer (SHC-pt), dedicated to automatically analyze posts in communities of cancer patients, based on SentiHealth. This context-tailored tool outperformed other general-purpose sentiment analysis tools at least in the cancer context. This suggests that the SentiHealth method could be instantiated as other disease-based tools during future works, for instance SentiHealth-HIV, SentiHealth-Stroke and SentiHealth-Sclerosis.


Subject(s)
Affect , Internet , Neoplasms/psychology , Social Support , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...