Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35591094

ABSTRACT

The study of sound in the natural environment provides interesting information for researchers and policy makers driving conservation policies in our society. The soundscape characterises the biophony, anthrophony and geophony of a particular area. The characterisation of these different sources can lead to changes in ecosystems and we need to identify these parameters in order to make the right decision in relation to the natural environment. These values could be extrapolated and potentially help different areas of ecoacoustic research. Technological advances have enabled the passive acoustic monitoring (PAM) of animal populations in their natural environment. Recordings can be made with little interference, avoiding anthropogenic effects, making it a very effective method for some species such as cetaceans and other marine species in addition to underwater noise studies. Passive acoustic monitoring can be used for population census, but also to understand the effect of human activities on animals. However, recording data over long periods of time requires large storage and processing capacity to handle all the acoustic events generated. In the case of marine environments, the installation of sensors and instruments can be costly in terms of money and maintenance effort. In addition, if they are placed offshore, a data communication problem arises with coverage and bandwidth. In this paper, we propose a low-cost instrument to monitor the soundscape of a marine area using ecoacoustic indices. The instrument is called MASE and provides three echo-acoustic indices at 10 min intervals that are available in real time, which drastically reduces the volume of data generated. It has been operating uninterruptedly for a year and a half since its deployment, except during maintenance periods. MASE has been able to operate uninterruptedly, and maintain an adequate temperature inside while preserving its structural integrity for long periods of time. This has allowed the monitoring and characterisation of the soundscape of the test area in Gando Bay, Gran Canaria Island (Spain) without the need for human intervention to access the data on the instrument itself. Thanks to its integration with an external server, this allows the long-term monitoring of the soundscape, and it is possible to observe changes in the soundscape. In addition, the instrument has made it possible to compare the period of acoustic inactivity during confinement and the return of anthropogenic acoustic activity at sea.


Subject(s)
Ecosystem , Sound , Acoustics , Animals , Environment , Noise
2.
Sensors (Basel) ; 19(16)2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31443285

ABSTRACT

A light field is a four-dimensional function that grabs the intensity of light rays traversing an empty space at each point. The light field can be captured using devices designed specifically for this purpose and it allows one to extract depth information about the scene. Most light-field algorithms require a huge amount of processing power. Fortunately, in recent years, parallel hardware has evolved and enables such volumes of data to be processed. Field programmable gate arrays are one such option. In this paper, we propose two hardware designs that share a common construction block to compute a disparity map from light-field data. The first design employs serial data input into the hardware, while the second employs view parallel input. These designs focus on performing calculations during data read-in and producing results only a few clock cycles after read-in. Several experiments were conducted. First, the influence of using fixed-point arithmetic on accuracy was tested using synthetic light-field data. Also tests on actual light field data were performed. The performance was compared to that of a CPU, as well as an embedded processor. Our designs showed similar performance to the former and outperformed the latter. For further comparison, we also discuss the performance difference between our designs and other designs described in the literature.

SELECTION OF CITATIONS
SEARCH DETAIL
...