Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Cell ; 59(12): 1593-1608.e6, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38640926

ABSTRACT

Epithelial remodeling of the Drosophila retina depends on the pulsatile contraction and expansion of apical contacts between the cells that form its hexagonal lattice. Phosphoinositide PI(3,4,5)P3 (PIP3) accumulates around tricellular adherens junctions (tAJs) during contact expansion and dissipates during contraction, but with unknown function. Here, we found that manipulations of Pten or PI3-kinase (PI3K) that either decreased or increased PIP3 resulted in shortened contacts and a disordered lattice, indicating a requirement for PIP3 dynamics and turnover. These phenotypes are caused by a loss of branched actin, resulting from impaired activity of the Rac1 Rho GTPase and the WAVE regulatory complex (WRC). We additionally found that during contact expansion, PI3K moves into tAJs to promote the cyclical increase of PIP3 in a spatially and temporally precise manner. Thus, dynamic control of PIP3 by Pten and PI3K governs the protrusive phase of junctional remodeling, which is essential for planar epithelial morphogenesis.


Subject(s)
Actins , Adherens Junctions , Drosophila Proteins , Morphogenesis , PTEN Phosphohydrolase , Phosphatidylinositol 3-Kinases , Phosphatidylinositol Phosphates , Retina , Animals , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Actins/metabolism , Phosphatidylinositol Phosphates/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Adherens Junctions/metabolism , Retina/metabolism , Retina/cytology , Drosophila melanogaster/metabolism , rac1 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/genetics
2.
J Cell Biol ; 223(2)2024 02 05.
Article in English | MEDLINE | ID: mdl-38126997

ABSTRACT

Lattice cells (LCs) in the developing Drosophila retina change shape before attaining final form. Previously, we showed that repeated contraction and expansion of apical cell contacts affect these dynamics. Here, we describe another factor, the assembly of a Rho1-dependent medioapical actomyosin ring formed by nodes linked by filaments that contract the apical cell area. Cell area contraction alternates with relaxation, generating pulsatile changes in cell area that exert force on neighboring LCs. Moreover, Rho1 signaling is sensitive to mechanical changes, becoming active when tension decreases and cells expand, while the negative regulator RhoGAP71E accumulates when tension increases and cells contract. This results in cycles of cell area contraction and relaxation that are reciprocally synchronized between adjacent LCs. Thus, mechanically sensitive Rho1 signaling controls pulsatile medioapical actomyosin contraction and coordinates cell behavior across the epithelium. Disrupting the kinetics of pulsing can lead to developmental errors, suggesting this process controls cell shape and tissue integrity during epithelial morphogenesis of the retina.


Subject(s)
Actomyosin , Drosophila , Eye , Animals , Actin Cytoskeleton/physiology , Actomyosin/physiology , Cytokinesis , Drosophila/embryology , Morphogenesis , Eye/embryology , rho GTP-Binding Proteins/physiology , Drosophila Proteins/physiology , Retina/cytology
3.
bioRxiv ; 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36993510

ABSTRACT

Epithelial remodeling of the Drosophila retina depends on the pulsatile contraction and expansion of apical contacts between the cells that form its hexagonal lattice. Phosphoinositide PI(3,4,5)P 3 (PIP 3 ) accumulates around tricellular adherens junctions (tAJs) during contact expansion and dissipates during contraction, but with unknown function. Here we found that manipulations of Pten or Pi3K that either decreased or increased PIP 3 resulted in shortened contacts and a disordered lattice, indicating a requirement for PIP 3 dynamics and turnover. These phenotypes are caused by a loss of protrusive branched actin, resulting from impaired activity of the Rac1 Rho GTPase and the WAVE regulatory complex (WRC). We additionally found that during contact expansion, Pi3K moves into tAJs to promote the cyclical increase of PIP 3 in a spatially and temporally precise manner. Thus, dynamic regulation of PIP 3 by Pten and Pi3K controls the protrusive phase of junctional remodeling, which is essential for planar epithelial morphogenesis.

4.
J Cell Biol ; 221(5)2022 05 02.
Article in English | MEDLINE | ID: mdl-35258563

ABSTRACT

Contractile actomyosin and protrusive branched F-actin networks interact in a dynamic balance, repeatedly contracting and expanding apical cell contacts to organize the epithelium of the developing fly retina. Previously we showed that the immunoglobulin superfamily protein Sidekick (Sdk) contributes to contraction by recruiting the actin binding protein Polychaetoid (Pyd) to vertices. Here we show that as tension increases during contraction, Sdk progressively accumulates at vertices, where it toggles to recruit the WAVE regulatory complex (WRC) to promote actin branching and protrusion. Sdk alternately interacts with the WRC and Pyd using the same C-terminal motif. With increasing protrusion, levels of Sdk and the WRC decrease at vertices while levels of Pyd increase paving the way for another round of contraction. Thus, by virtue of dynamic association with vertices and interchangeable associations with contractile and protrusive effectors, Sdk is central to controlling the balance between contraction and expansion that shapes this epithelium.


Subject(s)
Actin Cytoskeleton , Actins , Drosophila Proteins , Eye Proteins , Neural Cell Adhesion Molecules , Actin Cytoskeleton/metabolism , Actins/genetics , Actins/metabolism , Actomyosin/metabolism , Animals , Drosophila Proteins/metabolism , Drosophila melanogaster , Epithelium/metabolism , Eye Proteins/metabolism , Morphogenesis , Neural Cell Adhesion Molecules/metabolism , Tight Junction Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...