Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 931: 172703, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38703851

ABSTRACT

Methylmercury (MeHg) readily bioaccumulates and biomagnifies in aquatic food webs leading to elevated concentrations in fish and may thus induce toxicity. Oxidative stress is a suggested effect of MeHg bioaccumulation in fish. However, studies on how MeHg triggers oxidative stress in wild fish are scarce. The purpose of this study was to link the subcellular distribution of MeHg in the liver of northern pike from the St. Maurice River (Québec, Canada), affected by two run-of-river (RoR) dams, artificial wetlands, forest fires, and logging activity, to lipid peroxidation as an indicator of oxidative stress. We also evaluated the protective effects of the glutathione (GSH) system and selenium (Se), as they are known to alleviate MeHg toxicity. A customized subcellular partitioning protocol was used to separate the liver into metal-sensitive (mitochondria, microsome/lysosome and HDP - heat-denatured proteins) and metal-detoxified fractions (metal-rich granules and HSP - heat-stable proteins). We examined the relation among THg, MeHg, and Se concentration in livers and subcellular fractions, and the hepatic ratio of total GSH (GSHt) to oxidized glutathione (GSSG) on lipid peroxidation levels, using the concentrations of malondialdehyde (MDA), a product of lipid peroxidation. Results showed that hepatic MDA concentration was positively correlated with the combined MeHg and Se concentrations in northern pike liver (r2 = 0.88, p < 0.001) and that MDA concentrations were best predicted by MeHg associated with the mitochondria (r2 = 0.71, p < 0.001). This highlights the need for additional research on the MeHg influence on fish health and the interactions between Hg and Se in northern pike.


Subject(s)
Esocidae , Lipid Peroxidation , Liver , Methylmercury Compounds , Water Pollutants, Chemical , Animals , Lipid Peroxidation/drug effects , Liver/metabolism , Oxidative Stress , Mitochondria, Liver/metabolism , Mitochondria, Liver/drug effects , Quebec , Environmental Monitoring
2.
Environ Pollut ; 315: 120427, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36243189

ABSTRACT

Hunting has multiple consequences for wildlife, and it can be an important source of environmental pollution. Most big game hunters use lead (Pb) ammunition that shed metal fragments in the tissues of harvested animals. These Pb fragments become available to scavengers when hunters discard contaminated slaughter remains in the environment. This exposure route has been extensively studied in avian scavengers, but few studies have investigated Pb exposure from ammunition in mammals. Mammalian scavengers, including American black bears (Ursus americanus), frequently use slaughter remains discarded by hunters. The objective of this study was to investigate whether big game harvest density influenced long-term Pb exposure in American black bears from Quebec, Canada. Our results showed that female black bears had higher tooth Pb concentrations in areas with higher big game harvest densities, but such relationship was not evident in males. We also showed that older bears had higher tooth Pb concentrations compared to younger ones. Overall, our study showed that Pb exposure increases with age in black bears and that some of that Pb likely comes from bullet fragments embedded in slaughter remains discarded by hunters. These results suggest that hunters may drive mammalian scavengers into an evolutionary trap, whereby the long-term benefits of consuming slaughter remains could be negated due to increased Pb exposure.


Subject(s)
Ursidae , Animals , Male , Female , Lead , Animals, Wild , Birds , Canada
3.
Environ Pollut ; 312: 120077, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36057325

ABSTRACT

The subcellular partitioning approach provides useful information on the location of metals within cells and is often used on organisms with high levels of bioaccumulation to establish relationships between the internal concentration and the potential toxicity of metals. Relatively little is known about the subcellular partitioning of metals in wild fish with low bioaccumulation levels in comparison with those from higher contaminated areas. This study aims to examine the subcellular partitioning of various metals considering their chemical affinity and essentiality at relatively low contamination levels. Class A (Y, Sr), class B (Cu, Cd, MeHg), and borderline (Fe, Mn) metal concentrations were measured in livers and subcellular fractions of yellow perch (n = 21) collected in Lake Saint-Pierre, QC, Canada. The results showed that all metals, apart from MeHg, were distributed among subcellular fractions according to their chemical affinity. More than 60% of Y, Sr, Fe, and Mn were found in the metal-sensitive fractions. Cd and Cu were largely associated with the metallothionein-like proteins and peptides (60% and 67% respectively) whereas MeHg was found mainly in the metal-sensitive fractions (86%). In addition, the difference between the subcellular distribution of Cu and other essential metals like Fe and Mn denotes that, although the essentiality of some metals is a determinant of their subcellular distribution, the chemical affinity of metals is also a key driver. The similarity of the subcellular partitioning results with previous studies on yellow perch and other fish species from higher contaminated areas supports the idea that metals are distributed in the cellular environment according to their chemical properties regardless of the bioaccumulation gradient.


Subject(s)
Perches , Water Pollutants, Chemical , Animals , Cadmium/analysis , Canada , Lakes/chemistry , Liver/metabolism , Metallothionein/metabolism , Metals/analysis , Peptides/analysis , Peptides/metabolism , Perches/metabolism , Quebec , Water Pollutants, Chemical/analysis
4.
Metallomics ; 14(6)2022 06 22.
Article in English | MEDLINE | ID: mdl-35524697

ABSTRACT

Copper (Cu) is a redox-active transition element critical to various metabolic processes. These functions are accomplished in tandem with Cu-binding ligands, mainly proteins. The main goal of this work was to understand the mechanisms that govern the intracellular fate of Cu in the freshwater green alga, Chlamydomonas reinhardtii, and more specifically to understand the mechanisms underlying Cu detoxification by algal cells in low-Fe conditions. We show that Cu accumulation was up to 51-fold greater for algae exposed to Cu in low-Fe medium as compared to the replete-Fe growth medium. Using the stable isotope 65Cu as a tracer, we studied the subcellular distribution of Cu within the various cell compartments of C. reinhardtii. These data were coupled with metallomic and proteomic approaches to identify potential Cu-binding ligands in the heat-stable proteins and peptides fraction of the cytosol. Cu was mostly found in the organelles (78%), and in the heat-stable proteins and peptides (21%) fractions. The organelle fraction appeared to also be the main target compartment of Cu accumulation in Fe-depleted cells. As Fe levels in the medium were shown to influence Cu homeostasis, we found that C. reinhardtii can cope with this additional stress by utilizing different Cu-binding ligands. Indeed, in addition to expected Cu-binding ligands such as glutathione and phytochelatins, 25 proteins were detected that may also play a role in the Cu-detoxification processes in C. reinhardtii. Our results shed new light on the coping mechanisms of C. reinhardtii when exposed to environmental conditions that induce high rates of Cu accumulation.


Subject(s)
Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/metabolism , Copper/metabolism , Iron/metabolism , Isotopes/metabolism , Ligands , Proteomics
5.
Article in English | MEDLINE | ID: mdl-33806562

ABSTRACT

Uptake of the neurotoxicant monomethylmercury (MeHg) from fish and marine mammals continues to present a public health concern in Canada and elsewhere. However, fish and marine mammals are key diet items contributing to food security for some Indigenous populations in Canada. Mercury (Hg) exposure is estimated assuming that 100% of Hg is methylated, that 100% will be absorbed by the consumer and that cooking does not affect MeHg concentrations. Some of these assumptions do not correspond to our current state of knowledge. The aim of this study was to assess the impact of additional variables on Hg exposure equation using probabilistic risk analysis. New variables tested were (1) the proportion of methylated Hg compared to total Hg (pMeHg, %), (2) the relative absorption factor (RAF, %) expressed as bioaccessibility and (3) the mass loss factor (MLF, unitless) that represents the loss of moisture during cooking, known to increase MeHg concentration in fish and mammals. For the new variables, data from literature were used in order to set point estimate values that were further used in the probabilistic risk analysis. Modelling results for both fish and marine mammals indicate that adding these new variables significantly influenced estimates of MeHg exposure (Mood's median test, p < 0.05). This study highlights that the evaluation of exposure to MeHg is sensitive to pMeHg, RAF and MLF, and the inclusion of these variables in risk assessment should be considered with care. Further research is needed to provide better food-dependent, population-specific estimates of RAF and MLF before formal inclusion in exposure estimates.


Subject(s)
Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Animals , Canada , Cooking , Diet , Fishes , Mercury/analysis , Methylmercury Compounds/analysis , Water Pollutants, Chemical/analysis
6.
Toxics ; 9(2)2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33546146

ABSTRACT

Fish consumption is the main exposure pathway of the neurotoxicant methylmercury (MeHg) in humans. The risk associated with exposure to MeHg may be modified by its interactions with selenium (Se) and arsenic (As). In vitro bioaccessibility studies have demonstrated that cooking the fish muscle decreases MeHg solubility markedly and, as a consequence, its potential absorption by the consumer. However, this phenomenon has yet to be validated by in vivo models. Our study aimed to test whether MeHg bioaccessibility can be used as a surrogate to assess the effect of cooking on MeHg in vivo availability. We fed pigs raw and cooked tuna meals and collected blood samples from catheters in the portal vein and carotid artery at: 0, 30, 60, 90, 120, 180, 240, 300, 360, 420, 480 and 540 min post-meal. In contrast to in vitro models, pig oral bioavailability of MeHg was not affected by cooking, although the MeHg kinetics of absorption was faster for the cooked meal than for the raw meal. We conclude that bioaccessibility should not be readily used as a direct surrogate for in vivo studies and that, in contrast with the in vitro results, the cooking of fish muscle did not decrease the exposure of the consumer to MeHg.

7.
Chemosphere ; 265: 129036, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33272671

ABSTRACT

Current guidelines tend to limit fish consumption based on mercury (Hg) or monomethylmercury (MeHg) content in fish flesh, without considering the presence of antagonist chemical elements that could modulate Hg toxicity. However, it is difficult to assess the potential for antagonistic interactions of these elements since their covariation within muscle tissues is poorly known. Here we present the first study simultaneously mapping multiple metal(oid)s (Hg, As and Se), lipids and proteins in fish fillets in order to assess the magnitude of intra-organ variability of metals and the potential for antagonistic interactions. We mapped two fish species (Striped Bass and Northern Pike) with contrasting muscular structure with respect to the presence of white, intermediate and red muscles. In individual Striped Bass muscle tissues, metals varied on average by 2.2-fold. Methylmercury and selenium covaried strongly and were related to protein content as assessed by % N; arsenic was inversely related to these elements and was associated with the lipid fraction of the muscle. In Pike, no such relationship was found because the contents in proteins and lipids were less variable. Arsenic speciation revealed that arsenobetaine and arsenolipids were the only As species in those fish species, whereas the toxic inorganic As species (As3+) was under the detection limit. Arsenobetaine was related to % N, whereas arsenolipids covaried with % lipids. Elemental associations found with muscle lipids and proteins could help explain changes in bioaccumulation patterns within and between individuals with potential implications on fish toxicology, biomonitoring and human consumption guidelines.


Subject(s)
Bass , Mercury , Selenium , Water Pollutants, Chemical , Animals , Environmental Monitoring , Esocidae , Fishes , Humans , Lipids , Mercury/analysis , Selenium/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
8.
Environ Res ; 192: 110272, 2021 01.
Article in English | MEDLINE | ID: mdl-33038366

ABSTRACT

The endangered St. Lawrence Estuary (SLE) beluga population is declining and has shown no sign of recovery over the past decades despite several protective measures. Changes in the availability of food resources and exposure to organohalogen contaminants have been suggested as potential factors limiting the recovery of this population. Studies on SLE belugas have suggested that contaminant exposure may perturb energy metabolism, however, whether this translates into changes in energy reserves (lipid composition) and body condition is unknown. The objective of this study was to investigate the relationships between body condition and concentrations of organohalogens (polychlorinated biphenyls, organochlorine pesticides, and flame retardants) and a range of lipid metabolites (fatty acids, acylcarnitines, lysophosphatidylcholines, phosphatidylcholines, and sphingomyelins) in blubber samples collected from 51 SLE beluga carcasses recovered between 1998 and 2016 for which the cause of mortality was documented. Blubber Σ9fatty acid concentrations in SLE belugas significantly decreased between 1998 and 2016, suggesting a decline in energy reserves over the past two decades. Concentrations of several phosphatidylcholine analogues were greater in blubber of beluga males and/or females that were in poor body condition compared to those in good body condition. Moreover, concentrations of phosphatidylcholine acyl-alkyl C32:2 were greater in females that died from primary starvation (poor body condition). Greater concentrations of Σ12emerging flame retardants were also found in blubber of SLE beluga females that were in poorer body condition. This study suggests that the use of membrane lipids including phosphatidylcholine concentrations may be a good indicator of body condition and energy reserve status in blubber of marine mammals.


Subject(s)
Beluga Whale , Polychlorinated Biphenyls , Water Pollutants, Chemical , Adipose Tissue/chemistry , Animals , Canada , Estuaries , Female , Gelatin , Lipids , Male , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
9.
Environ Pollut ; 258: 113804, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31874439

ABSTRACT

Our knowledge of the processes leading to the bioaccumulation of rare earth elements (REE) in aquatic biota is limited. As the contamination of freshwater ecosystems by anthropogenic REE have recently been reported, it becomes increasingly urgent to understand how these metals are transferred to freshwater organisms in order to develop appropriate guidelines. We exposed rainbow trout (Oncorhynchus mykiss) to an REE, yttrium (Y), to either a range of Y-contaminated prey (Daphnia magna) or a range of Y-contaminated water. For the feeding experiment, the relationship between the Y assimilation by O. mykiss and the Y subcellular fractionation in D. magna was evaluated. Assimilation efficiency of Y by O. mykiss was low, ranging from 0.8 to 3%. These values were close to the proportion of Y accumulated in D. magna cytosol, 0.6-2%, a theoretical trophically available fraction. Moreover, under our laboratory conditions, water appeared as a poor source of Y transfer to O. mykiss. Regardless of the source of contamination, a similar pattern of Y bioaccumulation among O. mykiss tissues was revealed: muscles < liver < gills < intestine. We conclude that the trophic transfer potential of Y is low and the evaluation of Y burden in prey cytosol appears to be a relevant predictor of Y assimilation by their consumers.


Subject(s)
Oncorhynchus mykiss/metabolism , Water Pollutants, Chemical/metabolism , Yttrium/metabolism , Animals , Bioaccumulation , Ecosystem , Gills
10.
ACS Omega ; 4(9): 13747-13755, 2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31497692

ABSTRACT

The demand for rare earth elements (REEs) has increased since the 1990s leading to the development of many mining projects worldwide. However, less is known about how organisms can handle these metals in natural aquatic systems. Through laboratory experiments, we assessed the chronic toxicity and subcellular fractionation of yttrium (Y), one of the four most abundant REEs, in three freshwater organisms commonly used in aquatic toxicology: Daphnia magna, Chironomus riparius, and Oncorhynchus mykiss. In bioassays using growth as an end point, C. riparius was the only organism showing toxicity at Y exposure concentrations close to environmental ones. The lowest observable effect concentrations (LOECs) of Y assessed for D. magna and O. mykiss were at least 100 times higher than the Y concentration in natural freshwater. A negative correlation between Y toxicity and water hardness was observed for D. magna. When exposed to their respective estimated LOECs, D. magna bioaccumulated 15-45 times more Y than the other two organisms exposed to their own LOECs. This former species sequestered up to 75% of Y in the NaOH-resistant fraction, a putative metal-detoxified subcellular fraction. To a lesser extent, C. riparius bioaccumulated 20-30% of Y in this detoxified fraction. In contrast, the Y subcellular distribution in O. mykiss liver did not highlight any notable detoxification strategy; Y was accumulated primarily in mitochondria (ca. 32%), a putative metal-sensitive fraction. This fraction was also the main sensitive fraction where Y accumulated in C. riparius and D. magna. Hence, the interaction of Y with mitochondria could explain its toxicity. In conclusion, there is a wide range of subcellular handling strategies for Y, with D. magna accumulating high quantities but sequestering most of it in detoxified fractions, whereas O. mykiss tending to accumulate less Y but in highly sensitive fractions.

11.
PLoS One ; 14(8): e0221361, 2019.
Article in English | MEDLINE | ID: mdl-31442230

ABSTRACT

A subarctic fish community in mine-impacted Yellowknife Bay (Great Slave Lake, Northwest Territories, Canada) was investigated for biological and ecological processes controlling arsenic bioaccumulation. Total concentrations of arsenic, antimony, and metals were measured in over 400 fishes representing 13 species, and primary producers and consumers were included to characterize food web transfer. Yellowknife Bay had slightly more arsenic in surface waters (~3 µg/L) relative to the main body of Great Slave Lake (<1 µg/L), resulting in two-fold higher total arsenic concentrations in muscle of burbot (Lota lota), lake whitefish (Coregonus clupeaformis), and northern pike (Esox lucius). Other mining-associated contaminants, specifically antimony, lead, and silver, were typically below analytical detection in those fish species. No evidence was found for enhanced bioaccumulation of arsenic in long-lived, slow-growing subarctic fishes. Food web biodilution of total arsenic occurred between primary producers, aquatic invertebrates, and fish, although trophic position did not explain arsenic concentrations among fishes. Pelagic-feeding species had higher total arsenic concentrations compared to littoral fishes. Arsenic accumulated in subarctic fishes to comparable levels as fishes from lakes around the world with similar water arsenic concentrations. This first comprehensive study for a subarctic freshwater food web identified the importance of water exposure, biodilution, and habitat-specific feeding on arsenic bioaccumulation.


Subject(s)
Arsenic/toxicity , Bioaccumulation , Environmental Monitoring , Water Pollutants, Chemical/toxicity , Animals , Canada/epidemiology , Ecosystem , Fishes/physiology , Humans , Lakes/chemistry , Mining , Northwest Territories/epidemiology , Salmonidae , Seafood
12.
Sci Total Environ ; 675: 604-614, 2019 Jul 20.
Article in English | MEDLINE | ID: mdl-31035199

ABSTRACT

Mercury (Hg) is a trace element of particular concern since it is ubiquitous in the environment and because its methylated form (MeHg) readily bioaccumulates and biomagnifies in food webs. This latter process leads to elevated Hg concentrations in fish and may thus induce toxicity. Maternal transfer of bioaccumulated contaminants to offspring is a suggested mechanism of impaired reproductive success in fish. The purpose of this study was to assess the toxicity potential of Hg during maternal transfer in Yellow Perch from Lake Saint-Pierre (Quebec, Canada) using a subcellular partitioning approach. We also evaluated potential protective effects of selenium, as this element has been shown to alleviate Hg toxicity through sequestration. A customized subcellular partitioning protocol was used to separate liver and gonad of Yellow Perch into various subcellular fractions. Results show that, in the liver, MeHg was primarily (51%) associated to the subcellular fraction containing cytosolic enzymes. Furthermore, 23% and 15% of MeHg was found in hepatic and gonadal mitochondria, respectively, suggesting that Yellow Perch is not effectively detoxifying this metal. There was also a strong relationship (R2 = 0.73) between MeHg bioaccumulation in the liver and MeHg concentrations in gonadal mitochondria, which corroborates the potential risk linked to MeHg maternal transfer. On the other hand, we also found that selenium might have a protective effect on Hg toxicity at a subcellular level. In fact, Se:Hg molar ratios in subcellular fractions were systematically above 1 in all tissues and fractions examined, which corresponds to the suggested protective threshold. This study provides the first assessment of subcellular Se:Hg molar ratios in fish. Since early developmental stages in aquatic biota are particularly sensitive to Hg, this study represents a step forward in understanding the likelihood for toxic effects in wild fish through maternal transfer.


Subject(s)
Mercury/metabolism , Perches/metabolism , Selenium/metabolism , Water Pollutants, Chemical/metabolism , Animals , Environmental Monitoring , Food Chain , Selenium/analysis , Water Pollutants, Chemical/analysis
13.
Environ Res ; 168: 261-269, 2019 01.
Article in English | MEDLINE | ID: mdl-30342322

ABSTRACT

Concentrations of trace elements vary naturally between geological environments and as a result of emissions from anthropogenic activities. Habitat use strategy is an important determinant of trace element concentrations in tissues and eggs of wild birds. However, a scarcity of studies have documented the relationships between individual bird movements related to foraging activities and exposure to contaminants including trace elements. The objective of the present study was to investigate the influence of habitat use strategy, determined using GPS-based telemetry, on the liver concentrations of selected trace elements including rare earth elements (REEs) as well as lead (Pb) isotope ratios in an urban-adapted omnivorous bird, the ring-billed gull (Larus delawarensis). Male (n = 20) and female (n = 18) ring-billed gulls breeding near Montreal (QC, Canada) in one of the largest colony in North America were tracked using miniature GPS devices to characterize their movements over a 10-days period. The time spent foraging by both male and female gulls in landfills and wastewater basins positively correlated with liver Pb concentrations. A positive correlation was also found between the time spent foraging in agricultural fields and liver concentrations of yttrium (Y) in male and female ring-billed gulls. Heavy REE concentrations were significantly greater in female gull liver relative to those of males, although this was not associated with the time spent in any foraging habitats. Pb isotope ratios (208Pb/206Pb and 206Pb/207Pb) in the liver of male ring-billed gulls tended to be lower in individuals that foraged in landfills, thus indicating that they may have been exposed to different Pb sources relative to birds that visited other sites. This study provided valuable information on the potential sources of trace elements at the landscape level in free-ranging birds spanning urbanized environments.


Subject(s)
Charadriiformes/metabolism , Environmental Monitoring , Environmental Pollutants/metabolism , Trace Elements/metabolism , Animals , Birds , Canada , Ecosystem , Female , Male
14.
Environ Pollut ; 242(Pt A): 63-72, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29960926

ABSTRACT

Yelloweye rockfish (Sebastes ruberrimus) is an extremely long-lived species (up to ∼120 years) of fish, which inhabits the coastal waters of Alaska. Due to their long lifespans, yelloweye are known to accumulate high levels of mercury, and potentially other trace elements, in their tissues. Relatively little is known about the subcellular distribution of trace elements in the tissues of yelloweye rockfish; such information can provide important insights into detoxification/toxicity mechanisms at the subcellular level. To address this, we collected yelloweye rockfish (n = 8) from the eastern coast of Prince of Wales Island, Alaska in 2014. We determined the subcellular partitioning of trace elements (cadmium (Cd), lead (Pb), arsenic (As), total mercury (Hg), and selenium (Se)) in yelloweye livers with a partitioning procedure designed to separate liver cells into putative metal-sensitive fractions (cytosolic enzymes, organelles) and detoxified metal fractions (metallothionein or metallothionein-like proteins and peptides, granule-like structures) using differential centrifugation, NaOH digestion, and heat denaturation steps. The resulting fractions were then analyzed for total Hg with a direct Hg analyzer and for trace element concentrations by inductively coupled plasma-mass spectrometry (ICP-MS). For Cd, Pb, and As, the greatest contributions were found in the detoxified fractions, whereas the majority of total Hg was found in sensitive fractions. Selenium, an essential trace element, was distributed to a similar degree between the sensitive and detoxified compartments. Results indicate that although yelloweye sequestered and immobilized potentially toxic elements in detoxified fractions, the extent of binding differed among elements and followed the order: Cd > As > Pb > Hg. In yelloweye rockfish livers, the accumulation of non-essential elements at sensitive sites could lead to deleterious effects at the subcellular level, which should be evaluated in future studies.


Subject(s)
Arsenic/analysis , Liver/chemistry , Metals, Heavy/analysis , Perciformes , Water Pollutants, Chemical/analysis , Alaska , Animals , Environmental Monitoring , Liver/cytology , Liver/metabolism , Metallothionein/metabolism , Perciformes/metabolism
15.
Environ Toxicol Chem ; 37(2): 576-586, 2018 02.
Article in English | MEDLINE | ID: mdl-28984389

ABSTRACT

Biomolecules involved in handling cytosolic metals in the liver of the yellow perch (Perca flavescens) were characterized in juvenile fish collected from 4 lakes constituting metal contamination gradients. Using size-exclusion liquid chromatography coupled to an inductively coupled mass spectrometer, we determined metal distributions among ligands of different molecular weights in the cytosol, before and after a heat denaturation step designed to isolate metallothionein-like peptides and proteins. Silver, Cd, and Cu found in the heat-stable protein supernatants were indeed largely present as metallothionein-like peptide complexes; but Co, Ni, and Tl, also present in the heat-stable protein supernatants, did not coelute with metallothionein-like peptides and proteins. This difference in metal partitioning is consistent with the known preference of "soft" metals such as Ag, Cd, and Cu(I) for thiolated ligands and the contrasting tendency of Co and Ni to bind to ligands with oxygen and nitrogen as donor atoms. Metal handling in the whole cytosol also reflected these differences in metal-binding behavior. For Cd and Cu, the importance of the molecular weight pool that includes metallothionein-like peptides and proteins increased relative to the other pools as the total cytosolic metal concentration ([M]cytosol ) increased, consistent with a concentration-dependent detoxification response. In contrast, for Ni and Tl the increase in [M]cytosol was accompanied by a marked increase in the high-molecular weight (670-33 kDa) pool, suggesting that hepatic Ni and Tl are not effectively detoxified. Overall, the results suggest that metal detoxification is less effective for Ni, Tl, and Co than for Ag, Cd, and Cu. Environ Toxicol Chem 2018;37:576-586. © 2017 SETAC.


Subject(s)
Cytosol/metabolism , Lakes , Liver/metabolism , Metals/analysis , Perches/metabolism , Trace Elements/metabolism , Water Pollutants, Chemical/analysis , Water Pollution/analysis , Animals , Chromatography, Gel , Ligands , Metallothionein/metabolism , Organ Size , Peptides/metabolism , Spectrophotometry, Atomic , Temperature
16.
Aquat Toxicol ; 182: 49-57, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27866075

ABSTRACT

Chromium occurs in aquatic environments under two main redox forms, namely Cr(III) and Cr(VI), with different geochemical and biochemical properties. Cr(VI) readily crosses biological membranes of living organisms and once inside the cells it undergoes a rapid reduction to Cr(III). The route of entry for the latter form is, however, poorly known. Using the radioactive tracer 51Cr we compared the accumulation (absorption and adsorption) of the two Cr forms by the green unicellular alga Chlamydomonas reinhardii after 1h and 72h of exposure to 100nM of either Cr(III) or Cr(VI) at pH 7. Both Cr forms had similar accumulation, with a major part in the extracellular (adsorbed) fraction after 1h and a major part of total accumulated Cr in the intracellular (absorbed) fraction after 72h. We also investigated the intracellular partitioning of Cr using an operational fractionation scheme and found that both Cr forms had similar distributions among fractions: Cr was mostly associated with organelles (23±12% after 1h and 37±7% after 72h) and cytosolic heat-stable proteins and peptides (39±18% after 1h and 35±3% after 72h) fractions. Further investigations using a metallomic approach (SEC-ICP-MS) were performed with the heat-stable proteins and peptides fraction to compare the distribution of the two Cr forms among various biomolecules of this fraction. One Cr-binding biomolecule (∼28kDa) appeared after 1h of exposure for both Cr species. After 72h another biomolecule of lower molecular weight (∼0.7kDa) was involved in binding Cr and higher signal intensities were observed for Cr(VI) than for Cr(III). We show, for the first time, that both Cr(III) and Cr(VI) have similar fate within algal cells, supporting the tenet that a unique redox form occurs within cells.


Subject(s)
Chlamydomonas reinhardtii/metabolism , Chromium/metabolism , Chromium/chemistry , Environmental Exposure , Fresh Water/chemistry , Oxidation-Reduction , Water Pollutants, Chemical/metabolism
17.
Environ Pollut ; 212: 574-583, 2016 May.
Article in English | MEDLINE | ID: mdl-26986088

ABSTRACT

We sampled landlocked Arctic char (Salvelinus alpinus) from four lakes (Small, 9-Mile, North, Amituk) in the Canadian High Arctic that span a gradient of mercury contamination. Metals (Hg, Se, Tl, and Fe) were measured in char tissues to determine their relationships with health indices (relative condition factor and hepatosomatic index), stable nitrogen isotope ratios, and liver histology. A subcellular partitioning procedure was employed to determine how metals were distributed between potentially sensitive and detoxified compartments of Arctic char livers from a low- and high-mercury lake (Small Lake and Amituk Lake, respectively). Differences in health indices and metal concentrations among char populations were likely related to differences in feeding ecology. Concentrations of Hg, Se, and Tl were highest in the livers of Amituk char, whereas concentrations of Fe were highest in Small and 9-Mile char. At the subcellular level we found that although Amituk char had higher concentrations of Tl in whole liver than Small Lake char, they maintained a greater proportion of this metal in detoxified fractions, suggesting an attempt at detoxification. Mercury was found mainly in potentially sensitive fractions of both Small and Amituk Lake char, indicating that Arctic char are not effectively detoxifying this metal. Histological changes in char livers, mainly in the form of melano-macrophage aggregates and hepatic fibrosis, could be linked to the concentrations and subcellular distributions of essential or non-essential metals.


Subject(s)
Chemical and Drug Induced Liver Injury/pathology , Environmental Monitoring , Fish Diseases/chemically induced , Mercury/toxicity , Trace Elements/metabolism , Water Pollutants, Chemical/toxicity , Animal Distribution , Animals , Arctic Regions , Canada , Fish Diseases/pathology , Lakes , Liver/chemistry , Mercury/chemistry , Trace Elements/chemistry , Trout , Water Pollutants, Chemical/chemistry
18.
Mol Ecol Resour ; 16(6): 1401-1414, 2016 Nov.
Article in English | MEDLINE | ID: mdl-26946353

ABSTRACT

Environmental DNA (eDNA) promises to ease noninvasive quantification of fish biomass or abundance, but its integration within conservation and fisheries management is currently limited by a lack of understanding of the influence of eDNA collection method and environmental conditions on eDNA concentrations in water samples. Water temperature is known to influence the metabolism of fish and consequently could strongly affect eDNA release rate. As water temperature varies in temperate regions (both seasonally and geographically), the unknown effect of water temperature on eDNA concentrations poses practical limitations on quantifying fish populations using eDNA from water samples. This study aimed to clarify how water temperature and the eDNA capture method alter the relationships between eDNA concentration and fish abundance/biomass. Water samples (1 L) were collected from 30 aquaria including triplicate of 0, 5, 10, 15 and 20 Brook Charr specimens at two different temperatures (7 °C and 14 °C). Water samples were filtered with five different types of filters. The eDNA concentration obtained by quantitative PCR (qPCR) varied significantly with fish abundance and biomass and types of filters (mixed-design ANOVA, P < 0.001). Results also show that fish released more eDNA in warm water than in cold water and that eDNA concentration better reflects fish abundance/biomass at high temperature. From a technical standpoint, higher levels of eDNA were captured with glass fibre (GF) filters than with mixed cellulose ester (MCE) filters and support the importance of adequate filters to quantify fish abundance based on the eDNA method. This study supports the importance of including water temperature in fish abundance/biomass prediction models based on eDNA.


Subject(s)
Environmental Exposure , Metagenomics/methods , Population Density , Real-Time Polymerase Chain Reaction/methods , Trout/growth & development , Animals , Biomass , Temperature , Trout/genetics
19.
Environ Sci Technol ; 50(6): 3247-55, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26886407

ABSTRACT

We characterized the biomolecules involved in handling cytosolic metals in larvae of the phantom midge (Chaoborus) collected from five mining-impacted lakes by determining the distribution of Ag, Cd, Cu, Ni, Tl, and Zn among pools of various molecular weights (HMW: high molecular weight, >670-40 kDa; MMW: medium molecular weight, 40-<1.3 kDa; LMW: low molecular weight, <1.3 kDa). Appreciable concentrations of nonessential metals were found in the potentially metal-sensitive HMW (Ag and Ni) and LMW (Tl) pools, whereas the MMW pool, which includes metallothioneins (MTs) and metallothionein-like proteins and peptides (MTLPs), appears to be involved in Ag and Cd detoxification. Higher-resolution fractionation of the heat-stable protein (HSP) fraction revealed further differences in the partitioning of nonessential metals (i.e., Ag = Cd ≠ Ni ≠ Tl). These results provide unprecedented details about the metal-handling strategies employed by a metal-tolerant, freshwater animal in a field situation.


Subject(s)
Cytosol/metabolism , Diptera/drug effects , Metals/metabolism , Animals , Chemical Fractionation , Cytosol/drug effects , Diptera/metabolism , Environmental Monitoring , Insect Proteins/metabolism , Lakes , Larva/drug effects , Larva/metabolism , Metallothionein/metabolism , Metals/analysis , Metals/pharmacokinetics , Molecular Weight , Ontario , Water Pollutants, Chemical/metabolism
20.
Aquat Toxicol ; 160: 128-41, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25635611

ABSTRACT

We determined the intracellular compartmentalization of the trace metals Ag, As, Cd, Ni, Pb, and Tl in the livers of yellow eels collected from the Saint Lawrence River system in Canada (Anguilla rostrata) and in the area of the Gironde estuary in France (Anguilla anguilla). Differential centrifugation, NaOH digestion and thermal shock were used to separate eel livers into putative "sensitive" fractions (heat-denatured proteins, mitochondria and microsomes+lysosomes) and detoxified metal fractions (heat-stable peptides/proteins and granules). The cytosolic heat-stable fraction (HSP) was consistently involved in the detoxification of all trace metals. In addition, granule-like structures played a complementary role in the detoxification of Ni, Pb, and Tl in both eel species. However, these detoxification mechanisms were not completely effective because increasing trace metal concentrations in whole livers were accompanied by significant increases in the concentrations of most trace metals in "sensitive" subcellular fractions, that is, mitochondria, heat-denatured cytosolic proteins and microsomes+lysosomes. Among these "sensitive" fractions, mitochondria were the major binding sites for As, Cd, Pb, and Tl. This accumulation of non-essential metals in "sensitive" fractions likely represents a health risk for eels inhabiting the Saint Lawrence and Gironde environments.


Subject(s)
Eels/metabolism , Liver/chemistry , Liver/metabolism , Metals, Heavy/metabolism , Anguilla/metabolism , Animals , Canada , Cytosol/chemistry , Estuaries , France , Metals, Heavy/analysis , Rivers , Trace Elements/analysis , Trace Elements/metabolism , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...