Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38930396

ABSTRACT

Electrochemical impedance spectroscopy (EIS) is a modern and efficient method for the evaluation of the protective abilities of coatings. However, the interpretation of the experimental data is a difficult task. This paper aims to investigate the effect of the addition of a nano clay, Cloesite 30B®, on the barrier properties of an epoxy-based system through electrochemical impedance spectroscopy in an aerated sodium chloride solution. The EIS spectra of the samples analysed showed different evolutions over time. The subsequent processing of spectra using equivalent electrical circuits is an excellent analytical tool and allows the protective capacity of coatings to be assessed. By using this analysis, it was possible to define and comprehend the impact of adding nano clay in different concentrations to the epoxy resin coating. The work has shown the effectiveness of increasing the barrier effect of the coating with this type of nano clay. However, the improvement is linked to obtaining a correct dispersion of nanoparticles. Otherwise, there is the formation of macro-clusters of particles inside the coating. Their appearance can cause a deterioration in coating performance.

2.
Molecules ; 27(17)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36080476

ABSTRACT

In recent years thanks to the Internet of Things (IoT), the demand for the development of miniaturized and wearable sensors has skyrocketed. Among them, novel sensors for wearable medical devices are mostly needed. The aim of this review is to summarize the advancements in this field from current points of view, focusing on sensors embedded into textile fabrics. Indeed, they are portable, lightweight, and the best candidates for monitoring biometric parameters. The possibility of integrating chemical sensors into textiles has opened new markets in smart clothing. Many examples of these systems are represented by color-changing materials due to their capability of altering optical properties, including absorption, reflectance, and scattering, in response to different external stimuli (temperature, humidity, pH, or chemicals). With the goal of smart health monitoring, nanosized sol-gel precursors, bringing coupling agents into their chemical structure, were used to modify halochromic dyestuffs, both minimizing leaching from the treated surfaces and increasing photostability for the development of stimuli-responsive sensors. The literature about the sensing properties of functionalized halochromic azo dyestuffs applied to textile fabrics is reviewed to understand their potential for achieving remote monitoring of health parameters. Finally, challenges and future perspectives are discussed to envisage the developed strategies for the next generation of functionalized halochromic dyestuffs with biocompatible and real-time stimuli-responsive capabilities.


Subject(s)
Stimuli Responsive Polymers , Wearable Electronic Devices , Delivery of Health Care , Prospective Studies , Retrospective Studies , Textiles
3.
Polymers (Basel) ; 14(14)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35890564

ABSTRACT

In the field of stimuli-responsive materials, introducing a pH-sensitive dyestuff onto textile fabrics is a promising approach for the development of wearable sensors. In this paper, the alizarin red S dyestuff bonded with a sol-gel precursor, namely trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane, was used to functionalize polyethylene terephthalate fabrics, a semi-crystalline thermoplastic polyester largely used in the healthcare sector mainly due to its advantages, including mechanical strength, biocompatibility and resistance against abrasion and chemicals. The obtained hybrid halochromic silane-based coating on polyester fabrics was investigated with several chemical characterization techniques. Fourier transform infrared spectroscopy and X-ray Photoelectron Spectroscopy confirmed the immobilization of the dyestuff-based silane matrix onto polyethylene terephthalate samples through self-condensation of hydrolyzed silanols under the curing process. The reversibility and repeatability of pH-sensing properties of treated polyester fabrics in the pH range 2.0-8.0 were confirmed with diffuse reflectance and CIELAB color space characterizations. Polyester fabric functionalized with halochromic silane-based coating shows the durability of halochromic properties conversely to fabric treated with plain alizarin red S, thus highlighting the potentiality of the sol-gel approach in developing durable halochromic coating on synthetic substrates. The developed wearable pH-meter device could find applications as a non-invasive pH sensor for wellness and healthcare fields.

4.
Polymers (Basel) ; 14(9)2022 May 05.
Article in English | MEDLINE | ID: mdl-35567055

ABSTRACT

Stereolithography (SLA), one of the seven different 3D printing technologies, uses photosensitive resins to create high-resolution parts. Although SLA offers many advantages for medical applications, the lack of biocompatible and biobased resins limits its utilization. Thus, the development of new materials is essential. This work aims at designing, developing, and fully characterizing a bio-resin system (made of poly(ethylene glycol) diacrylate (PEGDA) and acrylated epoxidized soybean oil (AESO)), filled with micro- or nanocellulose crystals (MCC and CNC), suitable for 3D printing. The unfilled resin system containing 80 wt.% AESO was identified as the best resin mixture, having a biobased content of 68.8%, while ensuring viscosity values suitable for the 3D printing process (>1.5 Pa s). The printed samples showed a 93% swelling decrease in water, as well as increased tensile strength (4.4 ± 0.2 MPa) and elongation at break (25% ± 2.3%). Furthermore, the incorporation of MCC and CNC remarkably increased the tensile strength and Young's modulus of the cured network, thus indicating a strong reinforcing effect exerted by the fillers. Lastly, the presence of the fillers did not affect the UV-light penetration, and the printed parts showed a high quality, thus proving their potential for precise applications.

5.
J Colloid Interface Sci ; 617: 463-477, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35290804

ABSTRACT

HYPOTHESIS: The broad detection properties of alizarin, not only concerning pH variations but also temperature, glucose and health-like relevant cations alterations, make it a molecule of great scientific interest, particularly for developing multifunctional wearable sensors. EXPERIMENT: Herein, the alizarin red S dyestuff is bonded with trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane, as a sol-gel precursor, to functionalize cotton fabrics. The chemical and structural properties of both plain and silane-functionalized dyestuffs are investigated in solution and solid-state by several chemical-physical characterization techniques. FINDINGS: The hybrid dyestuff characterization reveals the epoxy ring-opening of the silica precursor, leading to covalent linkages to the sulfonic group of alizarin, which retains its structure during the sol-gel reaction. The silane-functionalized halochromic dyestuff shows similar halochromic behaviour as its pristine solution in the investigated pH range, thus demonstrating a color shift from yellow to red due to the protonation/deprotonation reversible mechanism of the chromophore. The reversibility and repeatability of pH-sensing properties of treated cotton fabrics are confirmed by diffuse reflectance and CIELAB color space characterizations. Cotton fabric functionalized with alizarin-containing sol-gel coating shows excellent durability of halochromic properties, thus emerging as a versatile platform for stimuli-responsive materials.


Subject(s)
Silanes , Wearable Electronic Devices , Anthraquinones , Silanes/chemistry , Textiles
6.
Biology (Basel) ; 11(1)2022 Jan 08.
Article in English | MEDLINE | ID: mdl-35053094

ABSTRACT

Aluminum is the second most widely used metal worldwide. It is present as an additive in cosmetics, pharmaceuticals, food, and food contact materials (FCM). In this study, we confirm the bactericidal effect of a special anodizing method, based on TiO2 nanoparticles (DURALTI®) deposited on aluminum disks with different roughness and subjected to two sanitizing treatments: UV and alcohol 70%. Consequently, we perform a time-course evaluation against both Gram-negative and Gram-positive bacteria to better frame the time required to achieve the best result. Approximately 106 CFU/mL of Escherichia coli ATCC 25922; Salmonella Typhimurium ATCC 1402; Yersinia enterocolitica ATCC 9610; Pseudomonas aeruginosa ATCC 27588; Staphylococcus aureus ATCC 6538; Enterococcus faecalis ATCC 29212; Bacillus cereus ATCC 14579 and Listeria monocytogenes NCTT 10888 were inoculated onto each aluminum surface and challenged with UV and alcohol 70% at 0, 15", 30", 1', 5', 15', 30', 1, 2, 4 and 6 h. DURALTI® coating already confirmed its ability to induce a 4-logarithmic decrease (from 106 to 102 CFU/mL) after 6 h. Once each sanitizing treatment was applied, an overall bacterial inhibition occurred in a time ranging from 15'' to 1'. The results are innovative in terms of preventing microbial adhesion and growth in the food industry.

7.
Molecules ; 26(19)2021 Sep 26.
Article in English | MEDLINE | ID: mdl-34641367

ABSTRACT

Relevant properties of gold nanoparticles, such as stability and biocompatibility, together with their peculiar optical and electronic behavior, make them excellent candidates for medical and biological applications. This review describes the different approaches to the synthesis, surface modification, and characterization of gold nanoparticles (AuNPs) related to increasing their stability and available features useful for employment as drug delivery systems or in hyperthermia and photothermal therapy. The synthetic methods reported span from the well-known Turkevich synthesis, reduction with NaBH4 with or without citrate, seeding growth, ascorbic acid-based, green synthesis, and Brust-Schiffrin methods. Furthermore, the nanosized functionalization of the AuNP surface brought about the formation of self-assembled monolayers through the employment of polymer coatings as capping agents covalently bonded to the nanoparticles. The most common chemical-physical characterization techniques to determine the size, shape and surface coverage of AuNPs are described underlining the structure-activity correlation in the frame of their applications in the biomedical and biotechnology sectors.


Subject(s)
Drug Delivery Systems , Gold/chemistry , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/chemistry , Polymers/chemistry , Animals , Humans
8.
Antibiotics (Basel) ; 10(8)2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34438952

ABSTRACT

One of the most-used food contact materials is stainless steel (AISI 304L or AISI 316L), owing to its high mechanical strength, cleanability, and corrosion resistance. However, due to the presence of minimal crevices, stainless-steel is subject to microbial contamination with consequent significant reverb on health and industry costs due to the lack of effective reliability of sanitizing agents and procedures. In this study, we evaluated the noncytotoxic effect of an amorphous SiOxCyHz coating deposited on stainless-steel disks and performed a time-course evaluation for four Gram-negative bacteria and four Gram-positive bacteria. A low cytotoxicity of the SiOxCyHz coating was observed; moreover, except for some samples, a five-logarithm decrease was visible after 1 h on coated surfaces without any sanitizing treatment and inoculated with Gram-negative and Gram-positive bacteria. Conversely, a complete bacterial removal was observed after 30 s-1 min application of alcohol and already after 15 s under UVC irradiation against both bacterial groups. Moreover, coating deposition changed the wetting behaviors of treated samples, with contact angles increasing from 90.25° to 113.73°, realizing a transformation from hydrophilicity to hydrophobicity, with tremendous repercussions in various technological applications, including the food industry.

9.
Materials (Basel) ; 14(11)2021 May 22.
Article in English | MEDLINE | ID: mdl-34067241

ABSTRACT

This review presents current literature on different nanocomposite coatings and surface finishing for textiles, and in particular this study has focused on smart materials, drug-delivery systems, industrial, antifouling and nano/ultrafiltration membrane coatings. Each of these nanostructured coatings shows interesting properties for different fields of application. In this review, particular attention is paid to the synthesis and the consequent physico-chemical characteristics of each coating and, therefore, to the different parameters that influence the substrate deposition process. Several techniques used in the characterization of these surface finishing coatings were also described. In this review the sol-gel method for preparing stimuli-responsive coatings as smart sensor materials is described; polymers and nanoparticles sensitive to pH, temperature, phase, light and biomolecules are also treated; nanomaterials based on phosphorus, borates, hydroxy carbonates and silicones are used and described as flame-retardant coatings; organic/inorganic hybrid sol-gel coatings for industrial applications are illustrated; carbon nanotubes, metallic oxides and polymers are employed for nano/ultrafiltration membranes and antifouling coatings. Research institutes and industries have collaborated in the advancement of nanotechnology by optimizing conversion processes of conventional materials into coatings with new functionalities for intelligent applications.

10.
Molecules ; 26(9)2021 May 10.
Article in English | MEDLINE | ID: mdl-34068616

ABSTRACT

In the late 1930s and early 1940s, it was discovered that the substitution on aromatic rings of hydrogen atoms with chlorine yielded a novel chemistry of antimicrobials. However, within a few years, many of these compounds and formulations showed adverse effects, including human toxicity, ecotoxicity, and unwanted environmental persistence and bioaccumulation, quickly leading to regulatory bans and phase-outs. Among these, the triclocarban, a polychlorinated aromatic antimicrobial agent, was employed as a major ingredient of toys, clothing, food packaging materials, food industry floors, medical supplies, and especially of personal care products, such as soaps, toothpaste, and shampoo. Triclocarban has been widely used for over 50 years, but only recently some concerns were raised about its endocrine disruptive properties. In September 2016, the U.S. Food and Drug Administration banned its use in over-the-counter hand and body washes because of its toxicity. The withdrawal of triclocarban has prompted the efforts to search for new antimicrobial compounds and several analogues of triclocarban have also been studied. In this review, an examination of different facets of triclocarban and its analogues will be analyzed.


Subject(s)
Carbanilides/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Biotransformation/drug effects , Carbanilides/chemistry , Carbanilides/toxicity , Ecotoxicology , Humans , Triclosan/chemistry , Triclosan/toxicity
11.
Microorganisms ; 9(2)2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33530444

ABSTRACT

Stainless steel, widely present in the food industry, is frequently exposed to bacterial colonization with possible consequences on consumers' health. 288 stainless steel disks with different roughness (0.25, 0.5 and 1 µm) were challenged with four Gram-negative (Escherichia coli ATCC 25922, Salmonella typhimurium ATCC 1402, Yersinia enterocolitica ATCC 9610 and Pseudomonas aeruginosa ATCC 27588) and four Gram-positive bacteria (Staphylococcus aureus ATCC 6538, Enterococcus faecalis ATCC 29212, Bacillus cereus ATCC 14579 and Listeria monocytogenes NCTT 10888) and underwent three different sanitizing treatments (UVC, alcohol 70% v/v and Gold lotion). Moreover, the same procedure was carried out onto the same surfaces after a nanotechnological surface coating (nanoXHAM® D). A significant bactericidal effect was exerted by all of the sanitizing treatments against all bacterial strains regardless of roughness and surface coating. The nanoXHAM® D coating itself induced an overall bactericidal effect as well as in synergy with all sanitizing treatments regardless of roughness. Stainless steel surface roughness is poorly correlated with bacterial adhesion and only sanitizing treatments can exert significant bactericidal effects. Most of sanitizing treatments are toxic and corrosive causing the onset of crevices that are able to facilitate bacterial nesting and growth. This nanotechnological coating can reduce surface adhesion with consequent reduction of bacterial adhesion, nesting, and growth.

12.
J Colloid Interface Sci ; 586: 120-134, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33162044

ABSTRACT

HYPOTHESIS: From the end of the twentieth century, the growing interest in a new generation of wearable electronics with attractive application for military, medical and smart textiles fields has led to a wide investigation of chemical finishes for the production of electronic textiles (e-textiles). EXPERIMENTS: Herein, a novel method to turn insulating cotton fabrics in electrically conductive by the deposition of three-dimensional hierarchical vertically aligned carbon nanotubes (VACNT) is proposed. Two VACNT samples with different length were synthesized and then dispersed in 4-dodecylbenzenesulfonic acid combined with silica-based sol-gel precursors. The dispersed VACNT were separately compounded with a polyurethane thickener to obtain homogeneous spreadable pastes, finally coated onto cotton surfaces by the "knife-over-roll" technique. FINDINGS: Shorter VACNT-based composite showed the best electrical conductivity, with a sheet resistance value less than 4.0 · 104 ± 6.7 · 103 Ω/sq. As demonstrated, developed e-textiles are suitable for application as humidity sensing materials in wearable smart textiles by exhibiting adequate response time for end-users and repeatability at several exposure cycles, still maintaining excellent flexibility. The proposed environmentally-friendly and cost-effective method can be easily widened to the scalable production of CNT-containing conductive flexible coatings, providing additional support to the development of real integration between electronics and textiles.

13.
ChemMedChem ; 13(24): 2635-2643, 2018 12 20.
Article in English | MEDLINE | ID: mdl-30347518

ABSTRACT

Chemotherapy is used for the treatment of all stages of breast cancer, including the metastatic stage of the disease. Treatment regimens are generally tailored for each patient's particular situation. However, chemotherapeutic agents are the leading cause of serious drug-related adverse effects; moreover, drug resistance often occurs. In this study, we designed and synthesized a new series of N-alkylcarbazoles derived from ellipticine, an alkaloid with a carbazole skeleton initially used in the treatment of metastatic breast cancer and later dismissed because of poor aqueous solubility and severe side effects. After evaluating the binding modes of our class of newly synthesized compounds with human topoisomerase II (hTopo II), we performed hTopo II decatenation assays, identifying compound 4 f (2-(4-((3-chloro-9H-carbazol-9-yl)pentyl)piperazin-1-yl)-N,N,N-trimethylethanammonium iodide) as a good inhibitor. Moreover, 4 f and 4 g (2-(4-((3-chloro-9H-carbazol-9-yl)hexyl)piperazin-1-yl)-N,N,N-trimethylethanammonium iodide) showed a good anti-proliferative activity toward breast cancer cells, causing apoptosis by activation of the caspase pathway. Interestingly, the activity of these two compounds on triple-negative MDA-MB-231 cells, which tend to be highly metastatic and aggressive, is strictly connected to the observed inhibition of hTopo II.


Subject(s)
Antineoplastic Agents/chemistry , Carbazoles/chemistry , DNA Topoisomerases, Type II/metabolism , Ellipticines/chemistry , Quaternary Ammonium Compounds/chemistry , Topoisomerase II Inhibitors/chemical synthesis , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Breast Neoplasms , Carbazoles/chemical synthesis , Carbazoles/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Ellipticines/chemical synthesis , Ellipticines/pharmacology , Female , Humans , Molecular Docking Simulation , Quaternary Ammonium Compounds/chemical synthesis , Quaternary Ammonium Compounds/pharmacology , Structure-Activity Relationship , Topoisomerase II Inhibitors/metabolism , Topoisomerase II Inhibitors/pharmacology
14.
Carbohydr Polym ; 196: 348-358, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-29891306

ABSTRACT

In this paper, a carboxyl-functionalized organophosphorus oligomer was immobilized onto cotton fabrics using 1,2,3,4-butanetetracarboxylic acid as an environmentally-friendly binder, in the presence of sodium hypophosphite, used as a catalyst, and triethanolamine, which contributes to phosphorous-nitrogen synergism. Moreover, with the aim of reducing the formation of insoluble calcium salt during home laundering, due to the free carboxylic acid groups bound to the cotton fabric, the treated samples were recoated employing three sol-gel precursors, namely 3-aminopropyltriethoxysilane, tetraethoxysilane and 3-glycidyloxypropyltriethoxysilane. Samples were thoroughly characterized to understand the bonding between coatings and substrate, as well as the related surface morphology. The thermal behaviour was investigated by thermogravimetric analysis, flame and combustion tests. The results revealed that the treated fabrics were able to achieve self-extinction. Comparing to the untreated sample, tearing strength of PMIDA/BTCA/SHP fabric was reduced in both warp and weft directions, while fabrics coated with an additional sol-gel layer were affected more significantly.

15.
Acta Crystallogr C ; 59(Pt 7): o390-1, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12855866

ABSTRACT

The title compound, C(21)H(19)N(7), is a polypyridine ligand that is suitable for assembling complex metal systems capable of photoinduced electron transfer. The solid-state structure has been determined at room temperature by single-crystal X-ray diffraction. The molecule is not flat and both the bis(pyridyl)triazole and the benzylideneamine fragments show significant distortions from planarity.

16.
Acta Crystallogr C ; 59(Pt 3): o117-9, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12711781

ABSTRACT

The title compound, C(16)H(12)N(2)O(3), is a novel potent and selective non-competitive antagonist at AMPA/kainate receptors [AMPA is 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid and kainate is 3-carboxymethyl-4-isopropenylpyrrolidine-2-carboxylic acid]. The crystal structure has been determined at room temperature by X-ray diffraction and the seven-membered ring shows the usual boat conformation. The energy stabilization of the crystal packing of the title compound by significant hydrogen-bond interactions is discussed using theoretical computations.

17.
Acta Crystallogr C ; 58(Pt 10): o608-9, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12359943

ABSTRACT

The title compound, alternatively known as N,N'-dibenzylethanedithioamide, C(16)H(16)N(2)S(2), lies about an inversion centre and contains a planar trans-dithiooxamide fragment characterized by a strong intramolecular hydrogen bond between the S atom and the adjacent amide H atom in the solid state, with an S...N distance of 2.926 (1) A. The aryl substituent is oriented orthogonal to the mean plane of the trans-dithiooxamide fragment due to steric hindrance and this effect is discussed.

18.
Acta Crystallogr C ; 58(Pt 5): m316-8, 2002 May.
Article in English | MEDLINE | ID: mdl-11983979

ABSTRACT

The title compound, [PdPtCl(C(3)H(5))(C(6)H(10)N(2)S(2))(C(17)H(14)NP)].CHCl(3), was obtained by deprotonation of the initial platinum(II) complex of the dithioxamide and subsequent reaction with [Pd(eta(3)-C(3)H(5))(micro-Cl)](2). Both metal atoms exhibit a square-planar coordination geometry, with the two planes forming a dihedral angle of 21.7 (2) degrees. The dithioxamide bis-chelating bridge is flat.

19.
Inorg Chem ; 35(23): 6816-6822, 1996 Nov 06.
Article in English | MEDLINE | ID: mdl-11666848

ABSTRACT

Tight contact ion pairs of general formula {Pt(H(2)-R(2)-dto)(2)(2+),(X(-))(2)} have been prepared, and their absorption spectra and luminescence properties (at room temperature in dichloromethane fluid solution and at 77 K in butyronitrile rigid matrix) have been studied (dto = dithiooxamide; R = methyl, X = Cl (1); R = butyl, X = Cl (2); R = benzyl, X = Cl (3); R = cyclohexyl, X = Cl (4); R = cyclohexyl, X = Br (5); R = cyclohexyl, X = I (6)). The absorption spectra of all the compounds are dominated by moderately strong Pt(dpi)/S(p) to dithiooxamide (pi) charge transfer (Pt/S --> dto CT) bands in the visible region (epsilon in the 10(4)-10(5) M(-)(1) cm(-)(1) range). Absorption features are also present at higher energies, due to pi-pi transitions centered in the dto ligands (ligand centered, LC). All the compounds exhibit a unstructured luminescence band in fluid solution at room temperature, with the maximum centered in the 700-730 nm range. The luminescence bands are blue-shifted about 4000 cm(-)(1) on passing to the rigid matrix at 77 K. Luminescence lifetimes are on the 10(-)(8)-10(-)(7) s time scale at room temperature and 1 order of magnitude longer at 77 K. Luminescence is assigned to triplet Pt/S --> dto CT excited states in all cases. Compounds 3-6 also exhibit a second higher-energy luminescence band at room temperature, centered at about 610 nm, attributed to a LC excited state. Charge transfer interactions between halides and dto ligands destabilize dto-centered orbitals, affecting the energy of Pt/S --> dto CT transitions and states. The X counterions and X --> dto CT levels are proposed to play a role in promoting excited state conversion between LC and Pt/S --> dto CT levels. The R substituents on the nitrogen atoms of the dto ligands influence the absorption and photophysical properties of the compounds, by affecting proximity of the ion pairs. The possibility to functionalize the R substituents may open the way to interface these luminescent compounds with desired substrates and to construct supramolecular assemblies.

SELECTION OF CITATIONS
SEARCH DETAIL
...