Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Air Waste Manag Assoc ; 73(10): 730-736, 2023 10.
Article in English | MEDLINE | ID: mdl-37610309

ABSTRACT

Particulate matter (PM) concentrations have decreased dramatically over the past 20 years, thus lower method detection limits (MDL) are required for these measurements. Energy-dispersive X-ray fluorescence (XRF) spectroscopy is used to quantify multiple elements simultaneously in the U.S. Environmental Protection Agency (EPA) Chemical Speciation Network (CSN). Inductively-coupled plasma mass spectrometry (ICP-MS) is an alternative analysis with lower MDL for elements. Here, we present a side-by-side comparison of XRF and ICP-MS for elements in PM2.5 samples collected via the EPA's CSN. For ICP-MS, a simple extraction and ICP-MS analysis technique was applied to a wide variety of samples to minimize effort and cost and serve as a feasibility test for a large monitoring network. Filter samples (N = 549) from various urban locations across the US were analyzed first analyzed via XRF at UC Davis and then ICP-MS at RTI International. Both methods measured 29 of the same elements out of the 33 usually reported to CSN. Of these 29, 14 elements (Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb) were found to be frequently detected (i.e. had more than 10% of values above both XRF and ICP-MS MDL). ICP-MS was found to have lower MDL for 26 out of 29 elements, namely Na, Mg, Al, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, As, Se, Rb, Sr, Zr, Ag, Cd, In, Sn, Sb, Cs, Ba, Ce, Pb; conversely, XRF had lower MDL for 3 elements, namely, P, K, Zn. Intra-method quality checks using (1) inter-elemental inspection of scatter plots using a priori knowledge of element sources and (2) scatter plots of routine versus collocated measurements reveal that ICP-MS exhibits better measurement precision. Lower detection limits for element measurements in nationwide PM monitoring networks would benefit human-health and source apportionment research.Implications: We demonstrate that ICP-MS with adilute-acid digestion method would significantly improve the element detection rates and thus be avaluable addition to the current analysis techniques for airborne PM samples in anationwide monitoring network. In this paper, we show that a hybrid method of elemental analysis for airborne particulate matter (PM) would significantly improve the detection rates for elements in PM. This would be a valuable addition to the current analysis techniques for airborne PM samples in nationwide and other large-scale monitoring networks, such as the EPA's Chemical Speciation Network (CSN). The techniques explored in this study (i.e., X-ray Fluorescence Spectroscopy or XRF and Inductively Coupled Plasma-Mass Spectrometry or ICP-MS) are relevant to the PM monitoring and regulatory community audience of JAWMA, especially agencies and states that are already involved in CSN. In addition, our results outline considerations that give insight on factors to consider for other large-scale and long-term ambient air monitoring efforts.


Subject(s)
Lead , Particulate Matter , United States , Humans , United States Environmental Protection Agency
2.
Environ Sci Technol ; 57(2): 896-908, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36603843

ABSTRACT

The hydroxyl radical (OH) is the dominant oxidant in the outdoor environment, controlling the lifetimes of volatile organic compounds (VOCs) and contributing to the growth of secondary organic aerosols. Despite its importance outdoors, there have been relatively few measurements of the OH radical in indoor environments. During the House Observations of Microbial and Environmental Chemistry (HOMEChem) campaign, elevated concentrations of OH were observed near a window during cooking events, in addition to elevated mixing ratios of nitrous acid (HONO), VOCs, and nitrogen oxides (NOX). Particularly high concentrations were measured during the preparation of a traditional American Thanksgiving dinner, which required the use of a gas stove and oven almost continually for 6 h. A zero-dimensional chemical model underpredicted the measured OH concentrations even during periods when direct sunlight illuminated the area near the window, which increases the rate of OH production by photolysis of HONO. Interferences with measurements of nitrogen dioxide (NO2) and ozone (O3) suggest that unmeasured photolytic VOCs were emitted during cooking events. The addition of a VOC that photolyzes to produce peroxy radicals (RO2), similar to pyruvic acid, into the model results in better agreement with the OH measurements. These results highlight our incomplete understanding of the nature of oxidation in indoor environments.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Ozone , Hydroxyl Radical/analysis , Hydroxyl Radical/chemistry , Photolysis , Air Pollution, Indoor/analysis , Nitrogen Oxides/analysis , Ozone/analysis , Cooking , Nitrous Acid/analysis , Nitrous Acid/chemistry , Air Pollutants/analysis
3.
Sci Adv ; 8(8): eabj9156, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35213219

ABSTRACT

Surface cleaning using commercial disinfectants, which has recently increased during the coronavirus disease 2019 pandemic, can generate secondary indoor pollutants both in gas and aerosol phases. It can also affect indoor air quality and health, especially for workers repeatedly exposed to disinfectants. Here, we cleaned the floor of a mechanically ventilated office room using a commercial cleaner while concurrently measuring gas-phase precursors, oxidants, radicals, secondary oxidation products, and aerosols in real-time; these were detected within minutes after cleaner application. During cleaning, indoor monoterpene concentrations exceeded outdoor concentrations by two orders of magnitude, increasing the rate of ozonolysis under low (<10 ppb) ozone levels. High number concentrations of freshly nucleated sub-10-nm particles (≥105 cm-3) resulted in respiratory tract deposited dose rates comparable to or exceeding that of inhalation of vehicle-associated aerosols.

4.
Environ Sci Technol ; 54(21): 13488-13497, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33064464

ABSTRACT

The relative importance of common activities on indoor nitrous acid (HONO) mixing ratios was explored during high time resolution, month-long measurements by chemical ionization mass spectrometry in a previously unoccupied house. Indoor HONO varied from 0.2 to 84.0 ppb (mean: 5.5 ppb; median 3.8 ppb), an order of magnitude higher than simultaneously measured outdoor values, indicating important indoor sources. They agree well with simultaneous measurements of HONO by Laser-Photofragmentation/Laser-Induced Fluorescence. Before any combustion activities, the mixing ratio of 3.0 ± 0.3 ppb is indicative of secondary sources such as multiphase formation from NO2. Cooking (with propane gas), especially the use of an oven, led to significant enhancements up to 84 ppb, with elevated mixing ratios persisting for a few days due to slow desorption from indoor surface reservoirs. Floor bleach cleaning led to prolonged, substantial decreases of up to 71-90% due to reactive processes. Air conditioning modulated HONO mixing ratios driven by condensation to wet surfaces in the AC unit. Enhanced ventilation also significantly lowered mixing ratios. Other conditions including human occupancy, ozone addition, and cleaning with terpene, natural product, and vinegar cleaners had a much smaller influence on HONO background levels measured following these activities.


Subject(s)
Air Pollution, Indoor , Air Conditioning , Air Pollution, Indoor/analysis , Cooking , Humans , Nitrous Acid/analysis , Ventilation
SELECTION OF CITATIONS
SEARCH DETAIL
...