Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Biochem ; 44(9): e13383, 2020 09.
Article in English | MEDLINE | ID: mdl-32696535

ABSTRACT

The aim of this study was evaluating the effects of jabuticaba aqueous extract (JPE - 0.5 g/kg) on serum lipid levels, immune system, and oxidative stress parameters of streptozotocin-induced diabetic rats. Administration of JPE for 30 days, by gavage, was able to reduce serum levels of total cholesterol, non-high density lipoprotein (HDL) cholesterol, and triglycerides in diabetic rats. The HDL cholesterol levels increased in both diabetic and healthy rats after JPE treatment. Total leukocyte and lymphocyte counts reduced in diabetic rats, and JPE treatment prevented these diabetes mellitus (DM)-induced changes in the immune system. In addition, the induction of DM also led to dysregulation in the activity of superoxide dismutase and catalase antioxidant enzymes as well as an increase in oxidative stress markers. Treatments with JPE reduced oxidative stress and modulated antioxidant enzyme activities. These data demonstrate the potential of JPE as an adjuvant treatment option for diabetic patients. PRACTICAL APPLICATIONS: Considering that it is very common to observe dyslipidemia in diabetic patients and that these alterations, combined with the increased oxidative stress levels, also common in these patients, can lead to the development of cardiovascular diseases, JPE would be an alternative treatment adjunct to reduce these risks. In addition, although more studies are needed, JPE has the potential to improve the count of total lymphocytes and leukocytes, which could assist in improving the immune response of these patients, who also commonly have a higher risk of infectious diseases. Thus, JPE could be used by these patients, in combination with conventional treatment, in the form of a nutraceutical rich in phenolic compounds.


Subject(s)
Diabetes Mellitus, Experimental , Animals , Blood Glucose , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/drug therapy , Humans , Immune System , Lipid Peroxidation , Lipids , Oxidative Stress , Rats , Streptozocin/toxicity
2.
Fitoterapia ; 143: 104558, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32198108

ABSTRACT

Indole alkaloids have attracted attention because of their therapeutic properties, being anti-inflammatory, antinociceptive, antitumoural, antioxidant and antimicrobial. These compounds present a wide structural diversity, which is directly related to the genera of the producing plants, as well as the biological activities. Indole alkaloids have attracted attention over the last decade because of this combination of bioactivity and structural diversity. Therefore, this review presented recent (2012-2018) advances in alkaloids, focusing on new compounds, extraction methods and biological activities. As such, approximately 70 articles were identified, which showed 261 new compounds produced by plants of the families Apocynaceae, Rubiaceae, Annonaceae and Loganiaceae. In addition, different extraction methods were identified, and the structures of the new compounds were analysed. In addition to indole molecules, there were mono-indole-, di-indole-, vinblastine-, vimblastine-, gelsedine-, geissospermidine-, koumine-, geissospermidine-, iboga-, perakine-, corynanthe-, vincamine-, ajmaline-, aspidorpema-, strychnos-type, ß-carboline alkaloids and indole alkaloid glucosides. The reported biological activities are mainly anticancer, antibacterial, antimalarial, antifungal, antiparasitic, and antiviral, as well as anti-acetylcholinesterase and anti-butyrylcolinesterase properties. This review serves as a guide for those wishing to find the most recently identified alkaloid structures and their associated activities.


Subject(s)
Indole Alkaloids/chemistry , Indole Alkaloids/pharmacology , Plants/chemistry , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plants/classification
3.
J Ethnopharmacol ; 239: 111863, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-30974203

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ethnopharmacological knowledge is important for the identification of active compounds from natural products. Pain may have different aetiologies with complex mechanisms. Tabernaemontana catharinensis A. DC. is well known for indole alkaloids, being used empirically in folk medicine, with antimicrobial and anti-inflammatory as well as antiofidic actions among others. AIM OF THE STUDY: This work aims to evaluate the antinociceptive and antioxidant effect in mice of the alkaloids extract from leaves of Tabernaemontana catharinensis A. DC. (AITc). MATERIALS AND METHODS: The AITc was produced by ultrasound and acid-base extraction, and the chemical composition was evaluated by high resolution mass spectrometry. Male mice (Mus musculus), Swiss, were used for in vivo tests. The AITc was administrated at doses of 1.0, 5.0, and 10.0 mg/kg in acetic acid model, formalin, tail-immersion, hot plate, and open field tests, and compared to saline, morphine, or diazepam controls, depending on the test. The toxicological, biochemical, haemogram and antioxidant effect were evaluated in mouse organs such as liver, brain, kidneys, spleen and stomach. RESULTS: In total, 10 compounds were identified in the AITc, being from the indole alkaloids from the ibogan and corynanthean classes. The extract in doses ranging from 5.0 to 10.0 mg/kg showed an antinociceptive effect for acetic acid, inhibiting by 47.7% and 61.6%. In the same line, reductions of 47.1% (first phase) and 43.6% (second phase) were observed for the 5.0 mg/kg dose in the formalin test. However, tail-immersion and hot plate tests did not show considerable modifications in the latency period, while in the open field test there was an inhibition of only 5.1%. It was observed no differences in NO levels and total antioxidant status of the mice in any of the studie tissues. CONCLUSIONS: The results justify the use of this plant in traditional medicine. in vivo tests indicate that these compounds possess central and peripheral mechanisms of action. This is study that reports the nociceptive action of these alkaloids, also including toxicity tests, which are intended to guarantee the safety of use of extracts of this plant.


Subject(s)
Alkaloids , Analgesics , Antioxidants , Plant Extracts , Tabernaemontana , Acetic Acid , Alkaloids/chemistry , Alkaloids/therapeutic use , Analgesics/chemistry , Analgesics/therapeutic use , Animals , Antioxidants/chemistry , Antioxidants/therapeutic use , Biphenyl Compounds/chemistry , Male , Mice , Pain/chemically induced , Pain/drug therapy , Picrates/chemistry , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Plant Leaves , Toxicity Tests, Acute , Toxicity Tests, Subchronic
4.
Bioorg Chem ; 85: 66-74, 2019 04.
Article in English | MEDLINE | ID: mdl-30599414

ABSTRACT

Active plant metabolites have been used as prototype drugs. In this context, Tabernaemontana catharinensis (Apocynaceae) has been highlighted because of the presence of active indole alkaloids. Thus, this study aims the bio-guided search of T. catharinensis cytotoxic alkaloids. The chemical composition was identified by high-resolution mass spectrometry, and fractionation was performed by open column and preparative thin-layer chromatography, from plant stems. The enriched fractions were tested in vitro in tumour cells A375 (melanoma cell line) and A549 (adenocarcinomic human alveolar basal epithelial cells), and non-tumour Vero cells (African green monkey kidney epithelial cells). The alkaloids identified as active were submitted to in silico toxicity prediction by ADME-Tox and OSIRIS programs and, also, to molecular docking, using topoisomerase I (PDB ID: 1SC7) by iGEMDOCK. As a result, six sub-fractions were obtained, which were identified as containing 16-epi-affinine, 12-methoxy-n-methyl-voachalotine, affinisine, voachalotine, coronaridine hydroxyindoline and ibogamine, respectively. The affinisine-containing sub-fraction showed selective toxicity against A375, with an IC50 of 11.73 µg mL-1, and no cytotoxicity against normal cells (Vero). From the in silico toxicity test results, all indole alkaloid compounds had a low toxicity risk. The molecular docking data provided structural models and binding affinities of the plant's indole alkaloids and topoisomerase I. In summary, this bio-guided search revealed that the indole alkaloids from T. catharinensis display selective cytotoxicity in A375 tumour cells and toxicity in silico. Particularly, affinisine might be a chemotherapeutic for A375 melanoma cells.


Subject(s)
Antineoplastic Agents/pharmacology , Indole Alkaloids/pharmacology , Tabernaemontana/chemistry , Animals , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/toxicity , Cell Line, Tumor , Chlorocebus aethiops , DNA Topoisomerases, Type I/metabolism , Density Functional Theory , Humans , Indole Alkaloids/isolation & purification , Indole Alkaloids/toxicity , Models, Chemical , Molecular Docking Simulation , Plant Stems/chemistry , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...