Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 49(5): 1165-1168, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38426964

ABSTRACT

The eigenvalue calibration method is a versatile approach that can be applied to any type of the Mueller matrix polarimetic setup because a precise knowledge of the optical response of the setup components is not required. The method has usually been employed in its original form to calibrate non-overdetermined polarimeters dealing with intensity data arranged in 4 × 4 matrices, but it can also be applied to calibrate overdetermined polarimeters with intensity data matrices of higher dimension. The main drawback with the original formulation of the method is its sensitivity to noise in the input data, especially if applied as it is to overdetermined intensity matrices. In the present work, we present a rigorous extension of the conventional eigenvalue calibration method to treat overdetermined data. We experimentally show that the proposed method does not enhance noise propagation, and therefore it does not degrade the quality of Mueller matrices measured with overdetermined polarimeters.

3.
iScience ; 25(6): 104377, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35620425

ABSTRACT

Antimony sulfide, Sb2S3, is interesting as the phase-change material for applications requiring high transmission from the visible to telecom wavelengths, with its band gap tunable from 2.2 to 1.6 eV, depending on the amorphous and crystalline phase. Here we present results from an interlaboratory study on the interplay between the structural change and resulting optical contrast during the amorphous-to-crystalline transformation triggered both thermally and optically. By statistical analysis of Raman and ellipsometric spectroscopic data, we have identified two regimes of crystallization, namely 250°C ≤ T < 300°C, resulting in Type-I spherulitic crystallization yielding an optical contrast Δn ∼ 0.4, and 300 ≤ T < 350°C, yielding Type-II crystallization bended spherulitic structure with different dielectric function and optical contrast Δn ∼ 0.2 below 1.5 eV. Based on our findings, applications of on-chip reconfigurable nanophotonic phase modulators and of a reconfigurable high-refractive-index core/phase-change shell nanoantenna are designed and proposed.

4.
Nanomaterials (Basel) ; 10(10)2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33096710

ABSTRACT

Low-loss dielectric nanomaterials are being extensively studied as novel platforms for enhanced light-matter interactions. Dielectric materials are more versatile than metals when nanostructured as they are able to generate simultaneously electric- and magnetic-type resonances. This unique property gives rise to a wide gamut of new phenomena not observed in metal nanostructures such as directional scattering conditions or enhanced optical chirality density. Traditionally studied dielectrics such as Si, Ge or GaP have an operating range constrained to the infrared and/or the visible range. Tuning their resonances up to the UV, where many biological samples of interest exhibit their absorption bands, is not possible due to their increased optical losses via heat generation. Herein, we report a quantitative survey on the UV optical performance of 20 different dielectric nanostructured materials for UV surface light-matter interaction based applications. The near-field intensity and optical chirality density averaged over the surface of the nanoparticles together with the heat generation are studied as figures of merit for this comparative analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...