Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Publication year range
1.
J Mater Sci Mater Med ; 34(8): 40, 2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37515640

ABSTRACT

The present work studies the effect of Mn doping on the crystalline structure of the Hap synthesized by the hydrothermal method at 200 °C for 24 h, from Ca(OH)2 and (NH4)2HPO4, incorporating MnCl2 to 0.1, 0.5, 1.0, 1.5 and 2.0 %wt of Mn concentrations. Samples were characterized by the X-Ray Diffraction technique, which revealed the diffraction peaks that corresponded to the hexagonal and monoclinic phase of the Hap; it was observed that the average size of crystallite decreased from 23.67 to 22.69 nm as the concentration of Mn increased. TEM shows that in all samples, there are two distributions of particle sizes; one corresponds to nanorods with several tens of nanometers in length, and the other in which the diameter and length are very close. FTIR analysis revealed absorption bands corresponding to the PO4-3 and OH- groups characteristic of the Hap. It was possible to establish a substitution mechanism between the Mn and the ions of Ca+2 of the Hap. From the Alamar blue test, a cell viability of 86.88% ± 5 corresponding to the sample of Hap at 1.5 %wt Mn was obtained, considered non-cytotoxic according to ISO 10993-5. It also evaluated and demonstrated the good osteoinductive properties of the materials, which were verified by histology and immunofluorescence expression of osteogenic markers. Adhesion, viability, biocompatibility and osteoinductive properties, make these materials candidates for future applications in bone tissue engineering with likely uses in regenerative medicine.


Subject(s)
Durapatite , Nanotubes , Durapatite/chemistry , Osteogenesis
2.
J Mater Sci Mater Med ; 33(12): 81, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36484847

ABSTRACT

Bone Regeneration represents a clinical need, related to bone defects such as congenital anomalies, trauma with bone loss, and/or some pathologies such as cysts or tumors This is why a polymeric biomaterial that mimics the osteogenic composition and structure represents a high potential to face this problem. The method of obtaining these materials was first to prepare a stabilized hydrogel by means of physical bonds and then to make use of the lyophilization technique to obtain the 3D porous scaffolds with temperature conditions of -58 °C and pressure of 1 Pa for 16 h. The physicochemical and bioactive properties of the scaffolds were studied. FTIR and TGA results confirm the presence of the initial components in the 3d matrix of the scaffold. The scaffolds exhibited a morphology with pore size and interconnectivity that promote good cell viability. Together, the cell viability and proliferation test, Alamar BlueTM and the differentiation test: alizarin staining, showed the ability of physically stabilized scaffolds to proliferate and differentiate swine dental pulp stem cell (DPSCs) followed by mineralization. Therefore, the Cs-PCL-PVA-HA scaffold stabilized by physical bonds has characteristics that suggest great utility for future complementary in vitro tests and in vivo studies on bone defects. Likewise, this biomaterial was enhanced with the addition of HA, providing a scaffold with osteoconductive properties necessary for good regeneration of bone tissue. Graphical abstract.


Subject(s)
Chitosan , Durapatite , Swine , Animals , Durapatite/chemistry , Tissue Engineering/methods , Chitosan/chemistry , Polyvinyl Alcohol , Tissue Scaffolds/chemistry , Dental Pulp , Osteogenesis , Biocompatible Materials/chemistry , Cell Differentiation , Bone and Bones , Stem Cells , Cell Proliferation
3.
J Mater Sci Mater Med ; 27(2): 35, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26704552

ABSTRACT

Conventional approaches to bone regeneration rarely use multiwall carbon nanotubes (MWCNTs) but instead use polymeric matrices filled with hydroxyapatite, calcium phosphates and bioactive glasses. In this study, we prepared composites of MWCNTs/polycaprolactone (PCL) for bone regeneration as follows: (a) MWCNTs randomly dispersed on PCL, (b) MWCNTs aligned with an electrical field to determine if the orientation favors the growing of human dental pulp stem cells (HDPSCs), and (c) MWCNTs modified with ß-glycerol phosphate (BGP) to analyze its osteogenic potential. Raman spectroscopy confirmed the presence of MWCNTs and BGP on PCL, whereas the increase in crystallinity by the addition of MWCNTs to PCL was confirmed by X-ray diffraction and differential scanning calorimetry. A higher elastic modulus (608 ± 4.3 MPa), maximum stress (42 ± 6.1 MPa) and electrical conductivity (1.67 × 10(-7) S/m) were observed in non-aligned MWCNTs compared with the pristine PCL. Cell viability at 14 days was similar in all samples according to the live/dead assay, but the 21 day cell proliferation, measured by MTT was higher in MWCNTs aligned with BGP. Von Kossa and Alizarin red showed larger amounts of mineral deposits on MWCNTs aligned with BGP, indicating that at 21 days, this scaffold promotes osteogenic differentiation of HDPSCs.


Subject(s)
Bone Regeneration , Dental Pulp/cytology , Nanotubes, Carbon/chemistry , Polyesters/chemistry , Stem Cells/cytology , Tissue Scaffolds/chemistry , Adolescent , Adult , Bone and Bones/cytology , Bone and Bones/physiology , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Cells, Cultured , Dental Pulp/physiology , Humans , Materials Testing , Osteogenesis/physiology , Stem Cells/physiology , Tissue Engineering/instrumentation , Tissue Engineering/methods , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL