Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 343: 123195, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38142811

ABSTRACT

Organophosphorus pesticides (OPPs) such as parathion have extensive uses in agriculture and household applications. Chronic exposure to these pesticides can cause severe health and environmental issues. Therefore, a current ecological concern is associated with accumulating these noxious OPPs in food and water sources. In this work, a new Tb3+-doped Zn-LMOF (Zn-LMOF= (3D) {[Zn3(1,4 benzenedicarboxylate)3(EtOH)2]·(EtOH)0.6}∞) was synthesized by a solvent-free reaction between the Zn-LMOF and the salt TbCl3·6H2O using a high-speed ball milling. The Tb@Zn-LMOF was thoroughly characterized by multiple spectroscopic tools, including Scanning Electron Microscopy with Energy-Dispersive X-ray Spectroscopy, and studied in-depth as a luminescent sensor for a series of pesticides (parathion, malathion, methalaxil, carbofuran, iprodione, captan and glyphosate) in aqueous methanol. The Tb@Zn-LMOF is a long-lived green-emitting compound with luminescence originated by an efficient antenna effect from the excited energy levels of Zn-LMOF toward the 5D state of Tb3+ ions, as it is displayed by its strong emission bands at 488, 545, 585, and 620 nm and a lifetime of 1.01 ms upon excitation at 290 nm. Additions of pesticides to a neutral methanolic dispersion of Tb@Zn-LMOF modified its green emission intensity with a pronounced selectivity toward parathion within the micromolar concentration range. The detection limit for parathion was calculated to be 3.04 ± 0.2 µM for Tb@Zn-LMOF. Based on 31P NMR and mass spectrometry studies, it is attributed to the release of lanthanide ions from Tb@Zn-LMOF with the simultaneous formation of a Tb3+-parathion complex.


Subject(s)
Metal-Organic Frameworks , Parathion , Pesticides , Metal-Organic Frameworks/chemistry , Luminescence , Pesticides/analysis , Organophosphorus Compounds , Ions/analysis , Zinc
2.
Dalton Trans ; 50(13): 4470-4485, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33877166

ABSTRACT

Optical sensors with high sensitivity and selectivity, as important analytical tools for chemical and environmental research, can be realized by straightforward synthesis of luminescent one-, two- and three-dimensional Zn(ii) and Cd(ii) crystalline coordination arrays (CPs and MOFs). In these materials with emission centers typically based on charge transfer and intraligand emissions, the quantitative detection of specific analytes, as pesticides or anions, is probed by monitoring real-time changes in their photoluminescence and color emission properties. Pesticides/herbicides have extensive uses in agriculture and household applications. Also, a large amount of metal salts of cyanide is widely used in several industrial processes such as mining and plastic manufacturing. Acute or chronic exposure to these compounds can produce high levels of toxicity in humans, animals and plants. Due to environmental concerns associated with the accumulation of these noxious species in food products and water supplies, there is an urgent and growing need to develop direct, fast, accurate and low-cost sensing methodologies. In this critical frontier, we discuss the effective strategies, chemical stability, luminescence properties, sensitivity and selectivity of recently developed hybrid Zn(ii)/Cd(ii)-organic materials with analytical applications in the direct sensing of pesticides, herbicides and cyanide ions in the aqueous phase and organic solvents.


Subject(s)
Cadmium/chemistry , Coordination Complexes/chemistry , Fluorescent Dyes/chemistry , Herbicides/analysis , Pesticides/analysis , Zinc/chemistry , Coordination Complexes/chemical synthesis , Fluorescent Dyes/chemical synthesis , Photochemical Processes
3.
Chem Asian J ; 15(19): 2925-2938, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32755069

ABSTRACT

This Minireview covers the latest developments of chemosensors based on transition-metal receptors and organic fluorophores with specific binding sites for the luminescent detection and recognition of iodide in aqueous media and real samples. In all selected examples within the last decade (made-post 2010), the iodide sensing and recognition is probed by monitoring real-time changes of the fluorescence or phosphorescence properties of the chemosensors. This review highlights effective strategies to iodide sensing from a structural approach where the iodide recognition/sensing process, through supramolecular interactions as coordination bonds, hydrogen bonds, halogen bonds and electrostatic interactions, is transduced into an optical change easily measurable. The selective iodide sensing is an active field of research with global interest due to the importance of iodide in biological, medicinal, industrial, environmental and chemical processes.

4.
J Nat Prod ; 83(7): 2212-2220, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32597650

ABSTRACT

Preliminary analysis of the mass spectrometric (MS) and NMR spectroscopic data of the primary fractions from the biologically active extract of Salvia decora revealed spectra that are characteristic for neo-clerodane-type diterpenoids. MS-guided isolation of the bioactive fractions led to the isolation of three new chemical entities, including two hydroxy-neo-clerodanes (1 and 2) and one acylated 5,10-seco-neo-clerodane (3), along with three known diterpenoids (4-6), ursolic acid (7), and eupatorin (8). The structures of the new compounds were established by analysis of the 1D and 2D NMR and MS data, whereas their absolute configuration was deduced using a combination of experimental and theoretical ECD data and confirmed by X-ray crystallography (1 and 4). Furthermore, compounds 1, 3, 4, and 6-8 were evaluated as hPTP1B1-400 (human protein tyrosine phosphatase) inhibitors, where 7 showed the best activity, with an IC50 value in the lower µM range. Additionally, compound 7 was evaluated as an α-glucosidase inhibitor. The affinity constant of the 7-hPTP1B1-400 complex was determined by quenching fluorescence experiments (ka = 1.3 × 104 M-1), while the stoichiometry ratio (1:1 protein-ligand) was determined by a continuous variation method.


Subject(s)
Diterpenes, Clerodane/isolation & purification , Salvia/chemistry , Crystallography, X-Ray , Diterpenes, Clerodane/chemistry , Molecular Structure , Spectrum Analysis/methods
5.
Dalton Trans ; 48(33): 12407-12420, 2019 Sep 07.
Article in English | MEDLINE | ID: mdl-31290879

ABSTRACT

Sensitive and direct sensing of cyanide in buffered aqueous solutions at pH = 7.0 by three new blue photoluminescent zinc-1,4-cyclohexanedicarboxylato coordination polymers bearing di-alkyl-2,2'-bipyridines has been achieved. Specifically, a Zn-polymer with the general formula: {[Zn2(H2O)2(e,a-cis-1,4-chdc)2(4,4'-dtbb)2]·7H2O}n, (1,4-chdc = 1,4-cyclohexanedicarboxylato and 4,4'-dtbb = 4,4'-ditert-butyl-2,2'-bipyridine) has been synthesized in high yield and studied as a luminescent chemosensor for halides, pseudohalides and a series of oxyanions in neutral water. CN- ions can be quantitatively detected by this polymer based on complete quenching (λem = 434 nm) in the sub-micromolar concentration range with a pronounced selectivity over common anions such as acetate, bromide and iodide. The quenching response (KSV = 9.7(±0.2) × 104 M-1) by the addition of CN- was also observed in the presence of typical interfering anions with a very low detection limit of 0.9 µmol L-1 in buffered water at pH = 7.0. On the basis of the crystal structure and solid state CPMAS 13C-NMR correlation and 1H NMR, IR-ATR, MS-ESI(+) and SEM-EDS experiments, the optical change is attributed to the efficient release of its corresponding ditert-butyl-bipyridine, with the simultaneous formation of a zinc cyanide complex. The CPMAS 13C-NMR spectrum of the coordination polymer is consistent with the symmetry of the crystal structure. The use of flexible coordination polymers as fluorescent sensors for fast and selective detection of cyanide ions in pure aqueous solutions has been unexplored until now.

6.
Dalton Trans ; 46(37): 12516-12526, 2017 Sep 26.
Article in English | MEDLINE | ID: mdl-28901358

ABSTRACT

Four coordination polymers have been synthesized using self-assembly solution reactions under ambient conditions, reacting Cd(ii) ions with 1,4-cyclohexanedicarboxylic acid in the presence of different 2,2'-bipyridine co-ligands: {[Cd(H2O)(e,a-cis-1,4-chdc)(2,2'-bpy)]·H2O}n (1); [Cd2(H2O)2(e,a-cis-1,4-chdc)2(4,4'-dmb)2]n (2); {[Cd(e,a-cis-1,4-chdc)(5,5'-dmb)]·H2O·CH3OH}n (3) and {[Cd(e,e-trans-1,4-chdc)(4,4'-dtbb)]·CH3OH}n (4), where 1,4-chdc = 1,4-cyclohexanedicarboxylato, 2,2'-bpy = 2,2'-bipyridine, 4,4'-dmb = 4,4'-dimethyl-2,2'-bipyridine, 5,5'-dmb = 5,5'-dimethyl-2,2'-bipyridine and 4,4'-dtbb = 4,4'-di-tert-butyl-2,2'-bipyridine. Crystallographic studies show that compound 1 has a 1D structure propagating along the crystallographic b-axis; the Cd ion in 1 is six-coordinated with a distorted-octahedral coordination sphere. Compound 2 has two crystallographic different Cd ions and both are six-coordinated with a distorted-octahedral coordination sphere. Compound 3 exhibits a seven-coordinated Cd ion having a distinctive distorted-monocapped trigonal prismatic geometry. In compound 4, the Cd ion is also seven-coordinated in a distorted monocapped octahedral geometry. Compounds 2, 3 and 4 possess rhombic-shaped dinuclear units (Cd2O2) as nodes to generate larger cycles made up of four dinuclear units, a Cd4 motif, bridged by four 1,4-chdc ligands, accomplishing, thus, 2D structures. Remarkably, in compound 4 the 1,4-chdc ligand conformation changes to the equatorial, equatorial trans, unlike the other compounds where the bridging ligand conformation is the more typical equatorial, axial cis. The solid state luminescence properties of 1-4 were investigated; polymers 3 and 4 exhibited a strong blue emission (λem = 410-414 nm) compared to 1 and 2; structure-related photoluminescence is attributed to the degree of hydration of the compounds. Furthermore, Cd-polymer 3 suspended in acetone allows the fluorescence selective sensing of acetonitrile over common organic solvents such as alcohols and DMF, based on turn-on fluorescence intensity with a limit of 53 µmol L-1.

SELECTION OF CITATIONS
SEARCH DETAIL
...