Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36850581

ABSTRACT

Acoustic emission (AE) testing and Lamb wave inspection techniques have been widely used in non-destructive testing and structural health monitoring. For thin plates, the AEs arising from structural defect development (e.g., fatigue crack propagation) propagate as Lamb waves, and Lamb wave modes can be used to provide important information about the growth and localisation of defects. However, few sensors can be used to achieve the in situ wavenumber-frequency modal decomposition of AEs. This study explores the ability of a new multi-element piezoelectric sensor array to decompose AEs excited by pencil lead breaks (PLBs) on a thin isotropic plate. In this study, AEs were generated by out-of-plane (transverse) and in-plane (longitudinal) PLBs applied at the edge of the plate, and waveforms were recorded by both the new sensor array and a commercial AE sensor. Finite element analysis (FEA) simulations of PLBs were also conducted and the results were compared with the experimental results. To identify the wave modes present, the longitudinal and transverse PLB test results recorded by the new sensor array at five different plate locations were compared with FEA simulations using the same arrangement. Two-dimensional fast Fourier Transforms were then applied to the AE wavefields. It was found that the AE modal composition was dependent on the orientation of the PLB direction. The results suggest that this new sensor array can be used to identify the AE wave modes excited by PLBs in both in-plane and out-of-plane directions.

2.
Materials (Basel) ; 10(7)2017 Jul 20.
Article in English | MEDLINE | ID: mdl-28773193

ABSTRACT

A key longstanding objective of the Structural Health Monitoring (SHM) research community is to enable the embedment of SHM systems in high value assets like aircraft to provide on-demand damage detection and evaluation. As against traditional non-destructive inspection hardware, embedded SHM systems must be compact, lightweight, low-power and sufficiently robust to survive exposure to severe in-flight operating conditions. Typical Commercial-Off-The-Shelf (COTS) systems can be bulky, costly and are often inflexible in their configuration and/or scalability, which militates against in-service deployment. Advances in electronics have resulted in ever smaller, cheaper and more reliable components that facilitate the development of compact and robust embedded SHM systems, including for Acousto-Ultrasonics (AU), a guided plate-wave inspection modality that has attracted strong interest due mainly to its capacity to furnish wide-area diagnostic coverage with a relatively low sensor density. This article provides a detailed description of the development, testing and demonstration of a new AU interrogation system called the Acousto Ultrasonic Structural health monitoring Array Module⁺ (AUSAM⁺). This system provides independent actuation and sensing on four Piezoelectric Wafer Active Sensor (PWAS) elements with further sensing on four Positive Intrinsic Negative (PIN) photodiodes for intensity-based interrogation of Fiber Bragg Gratings (FBG). The paper details the development of a novel piezoelectric excitation amplifier, which, in conjunction with flexible acquisition-system architecture, seamlessly provides electromechanical impedance spectroscopy for PWAS diagnostics over the full instrument bandwidth of 50 KHz-5 MHz. The AUSAM⁺ functionality is accessed via a simple hardware object providing a myriad of custom software interfaces that can be adapted to suit the specific requirements of each individual application.

3.
J Acoust Soc Am ; 135(6): 3446-54, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24907808

ABSTRACT

A method is proposed for determining in-plane components of motion in a Lamb wave from laser vibrometer measurements of surface motion out of plane. The approach relies on a frequency domain transformation that assumes knowledge only of the plate thickness and the bulk wave speeds. An outline of the relevant theory is followed by several validation case studies that generally affirm a useful level of accuracy and robust performance across a relatively wide frequency-thickness product range. In a comparison to the two-angle vibrometry approach, the proposed method is shown to be simpler to implement and to yield estimates with a consistently higher signal to noise ratio. The approach is then used to furnish estimates of the in-plane strains in Lamb waves propagating in an aluminum plate at frequencies below the first cut-off. These estimates are compared to strain measurements obtained from an adhesively bonded fiber Bragg grating. The agreement is shown to be excellent overall with an average discrepancy of less than 6%; however, systematic errors of twice that amount were recorded in the low-frequency-thickness product regime. These low-frequency discrepancies are not consistent with known sources of experimental error and cannot be explained by shear-lag theory.

SELECTION OF CITATIONS
SEARCH DETAIL
...