Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 24(4): 1080-4, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24468412

ABSTRACT

Trichomonas vaginalis continues to be a major health problem with drug-resistant strains increasing in prevalence. Novel antitrichomonal agents that are mechanistically distinct from current therapies are needed. The NIH Clinical Compound Collection was screened to find inhibitors of the uridine ribohydrolase enzyme required by the parasite to scavenge uracil for its growth. The proton-pump inhibitors omeprazole, pantoprazole, and rabeprazole were identified as inhibitors of this enzyme, with IC50 values ranging from 0.3 to 14.5 µM. This suggests a molecular mechanism for the in vitro antitrichomonal activity of these proton-pump inhibitors, and may provide important insights toward structure-based drug design.


Subject(s)
2-Pyridinylmethylsulfinylbenzimidazoles/pharmacology , N-Glycosyl Hydrolases/antagonists & inhibitors , Omeprazole/pharmacology , Proton Pump Inhibitors/pharmacology , Rabeprazole/pharmacology , Trichomonas vaginalis/enzymology , 2-Pyridinylmethylsulfinylbenzimidazoles/chemical synthesis , 2-Pyridinylmethylsulfinylbenzimidazoles/chemistry , Dose-Response Relationship, Drug , Molecular Structure , N-Glycosyl Hydrolases/metabolism , Omeprazole/chemical synthesis , Omeprazole/chemistry , Pantoprazole , Proton Pump Inhibitors/chemical synthesis , Proton Pump Inhibitors/chemistry , Rabeprazole/chemical synthesis , Rabeprazole/chemistry , Structure-Activity Relationship
2.
Chem Biol ; 19(6): 721-30, 2012 Jun 22.
Article in English | MEDLINE | ID: mdl-22726686

ABSTRACT

Plasmodium falciparum, the primary cause of deaths from malaria, is a purine auxotroph and relies on hypoxanthine salvage from the host purine pool. Purine starvation as an antimalarial target has been validated by inhibition of purine nucleoside phosphorylase. Hypoxanthine depletion kills Plasmodium falciparum in cell culture and in Aotus monkey infections. Hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) from P. falciparum is required for hypoxanthine salvage by forming inosine 5'-monophosphate, a branchpoint for all purine nucleotide synthesis in the parasite. Here, we present a class of HGXPRT inhibitors, the acyclic immucillin phosphonates (AIPs), and cell permeable AIP prodrugs. The AIPs are simple, potent, selective, and biologically stable inhibitors. The AIP prodrugs block proliferation of cultured parasites by inhibiting the incorporation of hypoxanthine into the parasite nucleotide pool and validates HGXPRT as a target in malaria.


Subject(s)
Enzyme Inhibitors/pharmacology , Organophosphonates/pharmacology , Pentosyltransferases/antagonists & inhibitors , Plasmodium falciparum/drug effects , Prodrugs/pharmacology , Catalytic Domain/drug effects , Cell Proliferation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Erythrocytes/drug effects , Humans , Models, Molecular , Molecular Conformation , Organophosphonates/chemical synthesis , Organophosphonates/chemistry , Pentosyltransferases/genetics , Pentosyltransferases/metabolism , Plasmodium falciparum/enzymology , Plasmodium falciparum/metabolism , Prodrugs/chemical synthesis , Prodrugs/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...