Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 62(35): e202307723, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37419865

ABSTRACT

The role of hydrogen atoms as surface ligands on metal nanoclusters is of profound importance but remains difficult to directly study. While hydrogen atoms often appear to be incorporated formally as hydrides, evidence suggests that they donate electrons to the cluster's delocalized superatomic orbitals and may consequently behave as acidic protons that play key roles in synthetic or catalytic mechanisms. Here we directly test this assertion for the prototypical Au9 (PPh3 )8 H2+ nanocluster, formed by addition of a hydride to the well-characterized Au9 (PPh3 )8 3+ . Using gas-phase infrared spectroscopy, we were able to unambiguously isolate Au9 (PPh3 )8 H2+ and Au9 (PPh3 )8 D2+ , revealing an Au-H stretching mode at 1528 cm-1 that shifts to 1038 cm-1 upon deuteration. This shift is greater than the maximum expected for a typical harmonic potential, suggesting a potential governing cluster-H bonding that has some square-well character consistent with the hydrogen nucleus behaving as a metal atom in the cluster core. Complexing this cluster with very weak bases reveals a redshift of 37 cm-1 in the Au-H vibration, consistent with those typically seen for moderately acidic groups in gas phase molecules and providing an estimate of the acidity of Au9 (PPh3 )8 H2+ , at least with regard to its surface reactivity.

2.
Mol Biochem Parasitol ; 217: 7-12, 2017 10.
Article in English | MEDLINE | ID: mdl-28811124

ABSTRACT

The aminopeptidase PfA-M1 is a key contributor to peptide catabolism in the human malaria parasite Plasmodium falciparum. PfA-M1 substrate specificity is shaped by the cylindrical S1 subsite, which accommodates the sidechain of the substrate P1 residue. At the top of the S1 subsite are two "cap" residues, E572 and M1034, that are positioned to influence S1 subsite specificity. In this study, we have mutated the cap residues, individually and together, and have evaluated the effects on PfA-M1 specificity and catalytic efficiency. When the P1 residue was too small to engage the cap residues, the mutations had no effect on catalysis. Hydrolysis of dipeptide substrates with a basic P1 residue was significantly impaired in the E572A mutant, most likely due to the loss of a stabilizing salt bridge between E572 and the P1 sidechain. With M1034A, a substantial reduction in catalytic efficiency was observed when the P1 sidechain was large and non-polar. The double E572A/M1034A exhibited significant decreases in catalytic efficiency for most substrates. This effect was not reversed with the polar substitutions E572N/M1034Q, which replaced the PfA-M1 cap residues with those of Escherichia coli aminopeptidase N. Both E572 and M1034 contributed to the binding of the competitive aminopeptidase inhibitor bestatin.


Subject(s)
Aminopeptidases/metabolism , Plasmodium falciparum/enzymology , Protozoan Proteins/metabolism , Amino Acid Substitution , Aminopeptidases/genetics , Catalysis , Hydrolysis , Mutation , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...