Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Comput ; 31(12): 2324-2347, 2019 12.
Article in English | MEDLINE | ID: mdl-31614108

ABSTRACT

The way grid cells represent space in the rodent brain has been a striking discovery, with theoretical implications still unclear. Unlike hippocampal place cells, which are known to encode multiple, environment-dependent spatial maps, grid cells have been widely believed to encode space through a single low-dimensional manifold, in which coactivity relations between different neurons are preserved when the environment is changed. Does it have to be so? Here, we compute, using two alternative mathematical models, the storage capacity of a population of grid-like units, embedded in a continuous attractor neural network, for multiple spatial maps. We show that distinct representations of multiple environments can coexist, as existing models for grid cells have the potential to express several sets of hexagonal grid patterns, challenging the view of a universal grid map. This suggests that a population of grid cells can encode multiple noncongruent metric relationships, a feature that could in principle allow a grid-like code to represent environments with a variety of different geometries and possibly conceptual and cognitive spaces, which may be expected to entail such context-dependent metric relationships.


Subject(s)
Entorhinal Cortex/physiology , Grid Cells/physiology , Nerve Net/physiology , Space Perception/physiology , Animals , Computer Simulation , Neural Networks, Computer
2.
J Comput Neurosci ; 47(1): 43-60, 2019 08.
Article in English | MEDLINE | ID: mdl-31286380

ABSTRACT

A neuron's firing correlates are defined as the features of the external world to which its activity is correlated. In many parts of the brain, neurons have quite simple such firing correlates. A striking example are grid cells in the rodent medial entorhinal cortex: their activity correlates with the animal's position in space, defining 'grid fields' arranged with a remarkable periodicity. Here, we show that the organization and evolution of grid fields relate very simply to physical space. To do so, we use an effective model and consider grid fields as point objects (particles) moving around in space under the influence of forces. We reproduce several observations on the geometry of grid patterns. This particle-like behavior is particularly salient in a recent experiment in which two separate grid patterns merge. We discuss pattern formation in the light of known results from physics of two-dimensional colloidal systems. Notably, we study the limitations of the widely used 'gridness score' and show how physics of 2d systems could be a source of inspiration, both for data analysis and computational modeling. Finally, we draw the relationship between our 'macroscopic' model for grid fields and existing 'microscopic' models of grid cell activity and discuss how a description at the level of grid fields allows to put constraints on the underlying grid cell network.


Subject(s)
Computer Simulation , Entorhinal Cortex/cytology , Models, Neurological , Neural Networks, Computer , Action Potentials/physiology , Animals , Orientation, Spatial , Sensory Receptor Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...