Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4930, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858378

ABSTRACT

The currently dominant types of land management are threatening the multifunctionality of ecosystems, which is vital for human well-being. Here, we present a novel ecological-economic assessment of how multifunctionality of agroecosystems in Central Germany depends on land-use type and climate. Our analysis includes 14 ecosystem variables in a large-scale field experiment with five different land-use types under two different climate scenarios (ambient and future climate). We consider ecological multifunctionality measures using averaging approaches with different weights, reflecting preferences of four relevant stakeholders based on adapted survey data. Additionally, we propose an economic multifunctionality measure based on the aggregate economic value of ecosystem services. Results show that intensive management and future climate decrease ecological multifunctionality for most scenarios in both grassland and cropland. Only under a weighting based on farmers' preferences, intensively-managed grassland shows higher multifunctionality than sustainably-managed grassland. The economic multifunctionality measure is about ~1.7 to 1.9 times higher for sustainable, compared to intensive, management for both grassland and cropland. Soil biodiversity correlates positively with ecological multifunctionality and is expected to be one of its drivers. As the currently prevailing land management provides high multifunctionality for farmers, but not for society at large, we suggest to promote and economically incentivise sustainable land management that enhances both ecological and economic multifunctionality, also under future climatic conditions.

2.
Ecol Evol ; 14(5): e11430, 2024 May.
Article in English | MEDLINE | ID: mdl-38766311

ABSTRACT

Plant species respond to varying plant species diversity and associated changes in their abiotic and biotic environment with changes in their phenotype. However, it is not clear to what degree this phenotypic differentiation is due to genotype diversity within populations or phenotypic plasticity of plant individuals. We studied individuals of 16 populations of the clonal herb Taraxacum officinale grown in plant communities of different species richness in a 17-year-old grassland biodiversity experiment (Jena Experiment). We collected 12 individuals in each population to measure phenotypic traits and identify distinct genotypes using microsatellite DNA markers. Plant species richness did not influence population-level genotype and trait diversity. However, it affected the expression of several phenotypic traits, e.g. leaf and inflorescence number, maximum leaf length and seed mass, which increased with increasing plant species richness. Moreover, population-level trait diversity correlated positively with genotype richness for leaf dry matter content (LDMC) and negatively with inflorescence number. For several traits (i.e. seed mass, germination rate, LDMC, specific leaf area (SLA)), a larger portion of variance was explained by genotype identity, while variance in other traits (i.e. number of inflorescences, leaf nitrogen concentration, leaf number, leaf length) resided within genotypes and thus was mostly due to phenotypic plasticity. Overall, our findings show that plant species richness positively affected the population means of some traits related to whole-plant performance, whose variation was achieved through both phenotypic plasticity and genotype composition of a population.

3.
Commun Biol ; 7(1): 309, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38467761

ABSTRACT

Effects of plant diversity on grassland productivity, or overyielding, are found to be robust to nutrient enrichment. However, the impact of cumulative nitrogen (N) addition (total N added over time) on overyielding and its drivers are underexplored. Synthesizing data from 15 multi-year grassland biodiversity experiments with N addition, we found that N addition decreases complementarity effects and increases selection effects proportionately, resulting in no overall change in overyielding regardless of N addition rate. However, we observed a convex relationship between overyielding and cumulative N addition, driven by a shift from complementarity to selection effects. This shift suggests diminishing positive interactions and an increasing contribution of a few dominant species with increasing N accumulation. Recognizing the importance of cumulative N addition is vital for understanding its impacts on grassland overyielding, contributing essential insights for biodiversity conservation and ecosystem resilience in the face of increasing N deposition.


Subject(s)
Ecosystem , Grassland , Nitrogen , Biodiversity , Plants
4.
Glob Chang Biol ; 30(3): e17225, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38462708

ABSTRACT

It is well known that biodiversity positively affects ecosystem functioning, leading to enhanced ecosystem stability. However, this knowledge is mainly based on analyses using single ecosystem functions, while studies focusing on the stability of ecosystem multifunctionality (EMF) are rare. Taking advantage of a long-term grassland biodiversity experiment, we studied the effect of plant diversity (1-60 species) on EMF over 5 years, its temporal stability, as well as multifunctional resistance and resilience to a 2-year drought event. Using split-plot treatments, we further tested whether a shared history of plants and soil influences the studied relationships. We calculated EMF based on functions related to plants and higher-trophic levels. Plant diversity enhanced EMF in all studied years, and this effect strengthened over the study period. Moreover, plant diversity increased the temporal stability of EMF and fostered resistance to reoccurring drought events. Old plant communities with shared plant and soil history showed a stronger plant diversity-multifunctionality relationship and higher temporal stability of EMF than younger communities without shared histories. Our results highlight the importance of old and biodiverse plant communities for EMF and its stability to extreme climate events in a world increasingly threatened by global change.


Subject(s)
Ecosystem , Grassland , Biodiversity , Plants , Soil
5.
Nat Commun ; 14(1): 6375, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37821444

ABSTRACT

Eutrophication usually impacts grassland biodiversity, community composition, and biomass production, but its impact on the stability of these community aspects is unclear. One challenge is that stability has many facets that can be tightly correlated (low dimensionality) or highly disparate (high dimensionality). Using standardized experiments in 55 grassland sites from a globally distributed experiment (NutNet), we quantify the effects of nutrient addition on five facets of stability (temporal invariability, resistance during dry and wet growing seasons, recovery after dry and wet growing seasons), measured on three community aspects (aboveground biomass, community composition, and species richness). Nutrient addition reduces the temporal invariability and resistance of species richness and community composition during dry and wet growing seasons, but does not affect those of biomass. Different stability measures are largely uncorrelated under both ambient and eutrophic conditions, indicating consistently high dimensionality. Harnessing the dimensionality of ecological stability provides insights for predicting grassland responses to global environmental change.


Subject(s)
Biodiversity , Grassland , Biomass , Eutrophication , Seasons , Ecosystem
6.
Nat Commun ; 14(1): 6624, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37857640

ABSTRACT

Little is currently known about how climate modulates the relationship between plant diversity and soil organic carbon and the mechanisms involved. Yet, this knowledge is of crucial importance in times of climate change and biodiversity loss. Here, we show that plant diversity is positively correlated with soil carbon content and soil carbon-to-nitrogen ratio across 84 grasslands on six continents that span wide climate gradients. The relationships between plant diversity and soil carbon as well as plant diversity and soil organic matter quality (carbon-to-nitrogen ratio) are particularly strong in warm and arid climates. While plant biomass is positively correlated with soil carbon, plant biomass is not significantly correlated with plant diversity. Our results indicate that plant diversity influences soil carbon storage not via the quantity of organic matter (plant biomass) inputs to soil, but through the quality of organic matter. The study implies that ecosystem management that restores plant diversity likely enhances soil carbon sequestration, particularly in warm and arid climates.


Subject(s)
Ecosystem , Soil , Carbon , Biodiversity , Biomass , Plants , Nitrogen
7.
Ecol Evol ; 13(3): e9883, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36911317

ABSTRACT

Positive plant diversity-productivity relationships are known to be driven by complementary resource use via differences in plant functional traits. Moreover, soil properties related to nutrient availability were shown to change with plant diversity over time; however, it is not well-understood whether and how such plant diversity-dependent soil changes and associated changes in functional traits contribute to positive diversity-productivity relationships in the long run. To test this, we investigated plant communities of different species richness (1, 2, 6, and 9 species) in a 15-year-old grassland biodiversity experiment. We determined community biomass production and biodiversity effects (net biodiversity [NEs], complementarity [CEs], and selection effects [SEs]), as well as community means of plant functional traits and soil properties. First, we tested how these variables changed along the plant diversity gradient and were related to each other. Then, we tested for direct and indirect effects of plant and soil variables influencing community biomass production and biodiversity effects. Community biomass production, NEs, CEs, SEs, plant height, root length density (RLD), and all soil property variables changed with plant diversity and the presence of the dominant grass species Arrhenatherum elatius (increase except for soil pH, which decreased). Plant height and RLD for plant functional traits, and soil pH and organic carbon concentration for soil properties, were the variables with the strongest influence on biomass production and biodiversity effects. Our results suggest that plant species richness and the presence of the dominant species, A. elatius, cause soil organic carbon to increase and soil pH to decrease over time, which increases nutrient availability favoring species with tall growth and dense root systems, resulting in higher biomass production in species-rich communities. Here, we present an additional process that contributes to the strengthening positive diversity-productivity relationship, which may play a role alongside the widespread plant functional trait-based explanation.

9.
Nat Commun ; 13(1): 7752, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36517483

ABSTRACT

Numerous studies have demonstrated that biodiversity drives ecosystem functioning, yet how biodiversity loss alters ecosystems functioning and stability in the long-term lacks experimental evidence. We report temporal effects of species richness on community productivity, stability, species asynchrony, and complementarity, and how the relationships among them change over 17 years in a grassland biodiversity experiment. Productivity declined more rapidly in less diverse communities resulting in temporally strengthening positive effects of richness on productivity, complementarity, and stability. In later years asynchrony played a more important role in increasing community stability as the negative effect of richness on population stability diminished. Only during later years did species complementarity relate to species asynchrony. These results show that species complementarity and asynchrony can take more than a decade to develop strong stabilizing effects on ecosystem functioning in diverse plant communities. Thus, the mechanisms stabilizing ecosystem functioning change with community age.


Subject(s)
Ecosystem , Grassland , Biodiversity , Plants , Biomass
10.
Sci Data ; 9(1): 631, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36261458

ABSTRACT

Vegetation-plot resurvey data are a main source of information on terrestrial biodiversity change, with records reaching back more than one century. Although more and more data from re-sampled plots have been published, there is not yet a comprehensive open-access dataset available for analysis. Here, we compiled and harmonised vegetation-plot resurvey data from Germany covering almost 100 years. We show the distribution of the plot data in space, time and across habitat types of the European Nature Information System (EUNIS). In addition, we include metadata on geographic location, plot size and vegetation structure. The data allow temporal biodiversity change to be assessed at the community scale, reaching back further into the past than most comparable data yet available. They also enable tracking changes in the incidence and distribution of individual species across Germany. In summary, the data come at a level of detail that holds promise for broadening our understanding of the mechanisms and drivers behind plant diversity change over the last century.


Subject(s)
Biodiversity , Ecosystem , Germany , Plants
11.
Nature ; 611(7936): 512-518, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36261519

ABSTRACT

Long-term analyses of biodiversity data highlight a 'biodiversity conservation paradox': biological communities show substantial species turnover over the past century1,2, but changes in species richness are marginal1,3-5. Most studies, however, have focused only on the incidence of species, and have not considered changes in local abundance. Here we asked whether analysing changes in the cover of plant species could reveal previously unrecognized patterns of biodiversity change and provide insights into the underlying mechanisms. We compiled and analysed a dataset of 7,738 permanent and semi-permanent vegetation plots from Germany that were surveyed between 2 and 54 times from 1927 to 2020, in total comprising 1,794 species of vascular plants. We found that decrements in cover, averaged across all species and plots, occurred more often than increments; that the number of species that decreased in cover was higher than the number of species that increased; and that decrements were more equally distributed among losers than were gains among winners. Null model simulations confirmed that these trends do not emerge by chance, but are the consequence of species-specific negative effects of environmental changes. In the long run, these trends might result in substantial losses of species at both local and regional scales. Summarizing the changes by decade shows that the inequality in the mean change in species cover of losers and winners diverged as early as the 1960s. We conclude that changes in species cover in communities represent an important but understudied dimension of biodiversity change that should more routinely be considered in time-series analyses.


Subject(s)
Biodiversity , Plants , Germany , Plants/classification , Species Specificity , Time Factors , Datasets as Topic
12.
Ecol Lett ; 25(12): 2699-2712, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36278303

ABSTRACT

Global change drivers, such as anthropogenic nutrient inputs, are increasing globally. Nutrient deposition simultaneously alters plant biodiversity, species composition and ecosystem processes like aboveground biomass production. These changes are underpinned by species extinction, colonisation and shifting relative abundance. Here, we use the Price equation to quantify and link the contributions of species that are lost, gained or that persist to change in aboveground biomass in 59 experimental grassland sites. Under ambient (control) conditions, compositional and biomass turnover was high, and losses (i.e. local extinctions) were balanced by gains (i.e. colonisation). Under fertilisation, the decline in species richness resulted from increased species loss and decreases in species gained. Biomass increase under fertilisation resulted mostly from species that persist and to a lesser extent from species gained. Drivers of ecological change can interact relatively independently with diversity, composition and ecosystem processes and functions such as aboveground biomass due to the individual contributions of species lost, gained or persisting.


Subject(s)
Ecosystem , Grassland , Biomass , Biodiversity , Plants
13.
Elife ; 112022 03 30.
Article in English | MEDLINE | ID: mdl-35353037

ABSTRACT

Global change has dramatic impacts on grassland diversity. However, little is known about how fast species can adapt to diversity loss and how this affects their responses to global change. Here, we performed a common garden experiment testing whether plant responses to global change are influenced by their selection history and the conditioning history of soil at different plant diversity levels. Using seeds of four grass species and soil samples from a 14-year-old biodiversity experiment, we grew the offspring of the plants either in their own soil or in soil of a different community, and exposed them either to drought, increased nitrogen input, or a combination of both. Under nitrogen addition, offspring of plants selected at high diversity produced more biomass than those selected at low diversity, while drought neutralized differences in biomass production. Moreover, under the influence of global change drivers, soil history, and to a lesser extent plant history, had species-specific effects on trait expression. Our results show that plant diversity modulates plant-soil interactions and growth strategies of plants, which in turn affects plant eco-evolutionary pathways. How this change affects species' response to global change and whether this can cause a feedback loop should be investigated in more detail in future studies.


Over the last hundred years, human activities including burning of fossil fuels, clearing of forests, and fertilizer use have caused environmental changes that have resulted in many species of plants, animals and other forms of life becoming extinct. Loss of plant species can change the local environment by, for example, altering the availability of nutrients and local communities of microbes in the soil. This may, in turn, cause remaining plant species to develop differently: they may take up fewer resources or become more prone to pathogens, both of which may alter their physical appearance. However, little is known about whether this happens and, if so, how rapidly such changes occur. Since 2002, researchers in Germany have been running a long-term project known as the Jena Experiment to study how plants behave when they grow in communities with different numbers of other plant species. For the experiment, various species of grass and other plants commonly found in grasslands were grown together in different combinations. Some plots contained many species (referred to as "high diversity") and others contained only a few ("low diversity"). Here, Dietrich et al. collected seeds from four grasses grown for 12 years in Jena Experiment plots with two or six plant species. The seeds were then transferred to pots and grown in a greenhouse using soil either from the plot where the seeds originated or from another plot with a different diversity level. To simulate human-made changes in the environment, the team added nitrogen fertilizer or decreased how much they watered some of the plants. The greenhouse experiment showed that after receiving nitrogen fertilizer, the seeds from the high diversity Jena Experiment plots grew into larger plants than the seeds from the low diversity plots. But there was no difference in size when the plants were watered less. Moreover, both fertilizer and watering treatment had different effects on the plants' physical appearance (root and leaf architecture) depending on the soil in which they were growing in. The findings of Dietrich et al. suggest that plants may respond differently to changes in their environment based on their origins and the soil they are growing in. This study provides the first indication that species loss could accelerate a further loss of species due to changes in how the plants develop and the communities of organisms living in the soil.


Subject(s)
Ecosystem , Plants , Biodiversity , Nitrogen/metabolism , Plants/metabolism , Soil
14.
Ecol Lett ; 24(12): 2713-2725, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34617374

ABSTRACT

Fertilisation experiments have demonstrated that nutrient availability is a key determinant of biomass production and carbon sequestration in grasslands. However, the influence of nutrients in explaining spatial variation in grassland biomass production has rarely been assessed. Using a global dataset comprising 72 sites on six continents, we investigated which of 16 soil factors that shape nutrient availability associate most strongly with variation in grassland aboveground biomass. Climate and N deposition were also considered. Based on theory-driven structural equation modelling, we found that soil micronutrients (particularly Zn and Fe) were important predictors of biomass and, together with soil physicochemical properties and C:N, they explained more unique variation (32%) than climate and N deposition (24%). However, the association between micronutrients and biomass was absent in grasslands limited by NP. These results highlight soil properties as key predictors of global grassland biomass production and point to serial co-limitation by NP and micronutrients.


Subject(s)
Grassland , Soil , Biomass , Carbon , Ecosystem , Micronutrients , Nitrogen/analysis
15.
Ecol Lett ; 24(11): 2378-2393, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34355467

ABSTRACT

Genetic differentiation and phenotypic plasticity jointly shape intraspecific trait variation, but their roles differ among traits. In short-lived plants, reproductive traits may be more genetically determined due to their impact on fitness, whereas vegetative traits may show higher plasticity to buffer short-term perturbations. Combining a multi-treatment greenhouse experiment with observational field data throughout the range of a widespread short-lived herb, Plantago lanceolata, we (1) disentangled genetic and plastic responses of functional traits to a set of environmental drivers and (2) assessed how genetic differentiation and plasticity shape observational trait-environment relationships. Reproductive traits showed distinct genetic differentiation that largely determined observational patterns, but only when correcting traits for differences in biomass. Vegetative traits showed higher plasticity and opposite genetic and plastic responses, masking the genetic component underlying field-observed trait variation. Our study suggests that genetic differentiation may be inferred from observational data only for the traits most closely related to fitness.


Subject(s)
Masks , Plantago , Adaptation, Physiological , Biomass , Phenotype
16.
Ecol Lett ; 24(10): 2100-2112, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34240557

ABSTRACT

The effects of altered nutrient supplies and herbivore density on species diversity vary with spatial scale, because coexistence mechanisms are scale dependent. This scale dependence may alter the shape of the species-area relationship (SAR), which can be described by changes in species richness (S) as a power function of the sample area (A): S = cAz , where c and z are constants. We analysed the effects of experimental manipulations of nutrient supply and herbivore density on species richness across a range of scales (0.01-75 m2 ) at 30 grasslands in 10 countries. We found that nutrient addition reduced the number of species that could co-occur locally, indicated by the SAR intercepts (log c), but did not affect the SAR slopes (z). As a result, proportional species loss due to nutrient enrichment was largely unchanged across sampling scales, whereas total species loss increased over threefold across our range of sampling scales.


Subject(s)
Biodiversity , Grassland , Ecosystem , Herbivory , Nutrients
17.
Nat Commun ; 12(1): 4431, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34290234

ABSTRACT

Experiments showed that biodiversity increases grassland productivity and nutrient exploitation, potentially reducing fertiliser needs. Enhancing biodiversity could improve P-use efficiency of grasslands, which is beneficial given that rock-derived P fertilisers are expected to become scarce in the future. Here, we show in a biodiversity experiment that more diverse plant communities were able to exploit P resources more completely than less diverse ones. In the agricultural grasslands that we studied, management effects either overruled or modified the driving role of plant diversity observed in the biodiversity experiment. Nevertheless, we show that greater above- (plants) and belowground (mycorrhizal fungi) biodiversity contributed to tightening the P cycle in agricultural grasslands, as reduced management intensity and the associated increased biodiversity fostered the exploitation of P resources. Our results demonstrate that promoting a high above- and belowground biodiversity has ecological (biodiversity protection) and economical (fertiliser savings) benefits. Such win-win situations for farmers and biodiversity are crucial to convince farmers of the benefits of biodiversity and thus counteract global biodiversity loss.


Subject(s)
Agriculture/methods , Biodiversity , Grassland , Phosphorus/metabolism , Agriculture/economics , Biomass , Fertilizers/economics , Latent Class Analysis , Mycorrhizae/classification , Mycorrhizae/metabolism , Phosphorus/analysis , Phosphorus/economics , Plants/classification , Plants/metabolism , Plants/microbiology , Soil/chemistry , Soil Microbiology
18.
Ecol Evol ; 11(12): 8156-8169, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34188877

ABSTRACT

Long-term biodiversity experiments have shown increasing strengths of biodiversity effects on plant productivity over time. However, little is known about rapid evolutionary processes in response to plant community diversity, which could contribute to explaining the strengthening positive relationship. To address this issue, we performed a transplant experiment with offspring of seeds collected from four grass species in a 14-year-old biodiversity experiment (Jena Experiment). We used two- and six-species communities and removed the vegetation of the study plots to exclude plant-plant interactions. In a reciprocal design, we transplanted five "home" phytometers (same origin and actual environment), five "away-same" phytometers (same species richness of origin and actual environment, but different plant composition), and five "away-different" phytometers (different species richness of origin and actual environment) of the same species in the study plots. In the establishment year, plants transplanted in home soil produced more shoots than plants in away soil indicating that plant populations at low and high diversity developed differently over time depending on their associated soil community and/or conditions. In the second year, offspring of individuals selected at high diversity generally had a higher performance (biomass production and fitness) than offspring of individuals selected at low diversity, regardless of the transplant environment. This suggests that plants at low and high diversity showed rapid evolutionary responses measurable in their phenotype. Our findings provide first empirical evidence that loss of productivity at low diversity is not only caused by changes in abiotic and biotic conditions but also that plants respond to this by a change in their micro-evolution. Thus, we conclude that eco-evolutionary feedbacks of plants at low and high diversity are critical to fully understand why the positive influence of diversity on plant productivity is strengthening through time.

19.
Trends Ecol Evol ; 36(9): 822-836, 2021 09.
Article in English | MEDLINE | ID: mdl-34088543

ABSTRACT

Under global change, how biological diversity and ecosystem services are maintained in time is a fundamental question. Ecologists have long argued about multiple mechanisms by which local biodiversity might control the temporal stability of ecosystem properties. Accumulating theories and empirical evidence suggest that, together with different population and community parameters, these mechanisms largely operate through differences in functional traits among organisms. We review potential trait-stability mechanisms together with underlying tests and associated metrics. We identify various trait-based components, each accounting for different stability mechanisms, that contribute to buffering, or propagating, the effect of environmental fluctuations on ecosystem functioning. This comprehensive picture, obtained by combining different puzzle pieces of trait-stability effects, will guide future empirical and modeling investigations.


Subject(s)
Biodiversity , Ecosystem , Phenotype
20.
Oecologia ; 197(2): 297-311, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34091787

ABSTRACT

Diversity loss has been shown to change the soil community; however, little is known about long-term consequences and underlying mechanisms. Here, we investigated how nematode communities are affected by plant species richness and whether this is driven by resource quantity or quality in 15-year-old plant communities of a long-term grassland biodiversity experiment. We extracted nematodes from 93 experimental plots differing in plant species richness, and measured above- and belowground plant biomass production and soil organic carbon concentrations (Corg) as proxies for resource quantity, as well as C/Nleaf ratio and specific root length (SRL) as proxies for resource quality. We found that nematode community composition and diversity significantly differed among plant species richness levels. This was mostly due to positive plant diversity effects on the abundance and genus richness of bacterial-feeding, omnivorous, and predatory nematodes, which benefited from higher shoot mass and soil Corg in species-rich plant communities, suggesting control via resource quantity. In contrast, plant-feeding nematodes were negatively influenced by shoot mass, probably due to higher top-down control by predators, and were positively related to SRL and C/Nleaf, indicating control via resource quality. The decrease of the grazing pressure ratio (plant feeders per root mass) with plant species richness indicated a higher accumulation of plant-feeding nematodes in species-poor plant communities. Our results, therefore, support the hypothesis that soil-borne pathogens accumulate in low-diversity communities over time, while soil mutualists (bacterial-feeding, omnivorous, predatory nematodes) increase in abundance and richness in high-diversity plant communities, which may contribute to the widely-observed positive plant diversity-productivity relationship.


Subject(s)
Nematoda , Soil , Animals , Biodiversity , Biomass , Carbon , Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...