Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Radiol Artif Intell ; 5(6): e230060, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38074789

ABSTRACT

Purpose: To analyze a recently published chest radiography foundation model for the presence of biases that could lead to subgroup performance disparities across biologic sex and race. Materials and Methods: This Health Insurance Portability and Accountability Act-compliant retrospective study used 127 118 chest radiographs from 42 884 patients (mean age, 63 years ± 17 [SD]; 23 623 male, 19 261 female) from the CheXpert dataset that were collected between October 2002 and July 2017. To determine the presence of bias in features generated by a chest radiography foundation model and baseline deep learning model, dimensionality reduction methods together with two-sample Kolmogorov-Smirnov tests were used to detect distribution shifts across sex and race. A comprehensive disease detection performance analysis was then performed to associate any biases in the features to specific disparities in classification performance across patient subgroups. Results: Ten of 12 pairwise comparisons across biologic sex and race showed statistically significant differences in the studied foundation model, compared with four significant tests in the baseline model. Significant differences were found between male and female (P < .001) and Asian and Black (P < .001) patients in the feature projections that primarily capture disease. Compared with average model performance across all subgroups, classification performance on the "no finding" label decreased between 6.8% and 7.8% for female patients, and performance in detecting "pleural effusion" decreased between 10.7% and 11.6% for Black patients. Conclusion: The studied chest radiography foundation model demonstrated racial and sex-related bias, which led to disparate performance across patient subgroups; thus, this model may be unsafe for clinical applications.Keywords: Conventional Radiography, Computer Application-Detection/Diagnosis, Chest Radiography, Bias, Foundation Models Supplemental material is available for this article. Published under a CC BY 4.0 license.See also commentary by Czum and Parr in this issue.

2.
Nat Commun ; 14(1): 6608, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37857643

ABSTRACT

Image-based prediction models for disease detection are sensitive to changes in data acquisition such as the replacement of scanner hardware or updates to the image processing software. The resulting differences in image characteristics may lead to drifts in clinically relevant performance metrics which could cause harm in clinical decision making, even for models that generalise in terms of area under the receiver-operating characteristic curve. We propose Unsupervised Prediction Alignment, a generic automatic recalibration method that requires no ground truth annotations and only limited amounts of unlabelled example images from the shifted data distribution. We illustrate the effectiveness of the proposed method to detect and correct performance drift in mammography-based breast cancer screening and on publicly available histopathology data. We show that the proposed method can preserve the expected performance in terms of sensitivity/specificity under various realistic scenarios of image acquisition shift, thus offering an important safeguard for clinical deployment.


Subject(s)
Breast Neoplasms , Mammography , Humans , Female , Mammography/methods , Breast Neoplasms/diagnostic imaging , Sensitivity and Specificity , ROC Curve , Software , Image Processing, Computer-Assisted/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...