Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Morphol ; 284(6): e21595, 2023 06.
Article in English | MEDLINE | ID: mdl-37183495

ABSTRACT

In contrast to the well-studied articulated vertebrate jaws, the structure and function of cephalopod jaws remains poorly known. Cephalopod jaws are unique as the two jaw elements do not contact one another, are embedded in a muscular mass and connected through a muscle joint. Previous studies have described the anatomy of the buccal mass muscles in cephalopods and have proposed variation in muscle volume depending on beak shape. However, the general structure of the muscles has been suggested to be similar in octopuses, squids, and cuttlefish. Here we provide a quantitative analysis of the variation in the buccal mass of coleoids using traditional dissections, histological sections and contrast-enhanced computed tomography scans. Our results show that the buccal mass is composed of four main homologous muscles present in both decapodiforms and octopodiforms as suggested previously. However, we also report the presence of a muscle uniquely present in octopodiforms (the postero-lateral mandibular muscle). Our three dimensional reconstructions and quantitative analyses of the buccal mass muscles pave the way for future functional analyses allowing to better model jaw closing in coleoids. Finally, our results suggest differences in beak and muscle function that need to be validated using future in vivo functional analyses.


Subject(s)
Octopodiformes , Animals , Anatomy, Comparative , Octopodiformes/physiology , Muscles/physiology , Decapodiformes , Jaw/diagnostic imaging
3.
Front Physiol ; 13: 1038064, 2022.
Article in English | MEDLINE | ID: mdl-36467695

ABSTRACT

The use of cephalopod beaks in ecological and population dynamics studies has allowed major advances of our knowledge on the role of cephalopods in marine ecosystems in the last 60 years. Since the 1960's, with the pioneering research by Malcolm Clarke and colleagues, cephalopod beaks (also named jaws or mandibles) have been described to species level and their measurements have been shown to be related to cephalopod body size and mass, which permitted important information to be obtained on numerous biological and ecological aspects of cephalopods in marine ecosystems. In the last decade, a range of new techniques has been applied to cephalopod beaks, permitting new kinds of insight into cephalopod biology and ecology. The workshop on cephalopod beaks of the Cephalopod International Advisory Council Conference (Sesimbra, Portugal) in 2022 aimed to review the most recent scientific developments in this field and to identify future challenges, particularly in relation to taxonomy, age, growth, chemical composition (i.e., DNA, proteomics, stable isotopes, trace elements) and physical (i.e., structural) analyses. In terms of taxonomy, new techniques (e.g., 3D geometric morphometrics) for identifying cephalopods from their beaks are being developed with promising results, although the need for experts and reference collections of cephalopod beaks will continue. The use of beak microstructure for age and growth studies has been validated. Stable isotope analyses on beaks have proven to be an excellent technique to get valuable information on the ecology of cephalopods (namely habitat and trophic position). Trace element analyses is also possible using beaks, where concentrations are significantly lower than in other tissues (e.g., muscle, digestive gland, gills). Extracting DNA from beaks was only possible in one study so far. Protein analyses can also be made using cephalopod beaks. Future challenges in research using cephalopod beaks are also discussed.

4.
Ecol Evol ; 11(12): 7730-7742, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34188847

ABSTRACT

Technical advances in 3D imaging have contributed to quantifying and understanding biological variability and complexity. However, small, dry-sensitive objects are not easy to reconstruct using common and easily available techniques such as photogrammetry, surface scanning, or micro-CT scanning. Here, we use cephalopod beaks as an example as their size, thickness, transparency, and dry-sensitive nature make them particularly challenging. We developed a new, underwater, photogrammetry protocol in order to add these types of biological structures to the panel of photogrammetric possibilities.We used a camera with a macrophotography mode in a waterproof housing fixed in a tank with clear water. The beak was painted and fixed on a colored rotating support. Three angles of view, two acquisitions, and around 300 pictures per specimen were taken in order to reconstruct a full 3D model. These models were compared with others obtained with micro-CT scanning to verify their accuracy.The models can be obtained quickly and cheaply compared with micro-CT scanning and have sufficient precision for quantitative interspecific morphological analyses. Our work shows that underwater photogrammetry is a fast, noninvasive, efficient, and accurate way to reconstruct 3D models of dry-sensitive objects while conserving their shape. While the reconstruction of the shape is accurate, some internal parts cannot be reconstructed with photogrammetry as they are not visible. In contrast, these structures are visible using reconstructions based on micro-CT scanning. The mean difference between both methods is very small (10-5 to 10-4 mm) and is significantly lower than differences between meshes of different individuals.This photogrammetry protocol is portable, easy-to-use, fast, and reproducible. Micro-CT scanning, in contrast, is time-consuming, expensive, and nonportable. This protocol can be applied to reconstruct the 3D shape of many other dry-sensitive objects such as shells of shellfish, cartilage, plants, and other chitinous materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...