Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cold Spring Harb Protoc ; 2024(4): pdb.over107784, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-36997275

ABSTRACT

The ubiquitin signaling cascade plays a crucial role in human cells. Consistent with this, malfunction of ubiquitination and deubiquitination is implicated in the initiation and progression of numerous human diseases, including cancer. Therefore, the development of potent and specific modulators of ubiquitin signal transduction has been at the forefront of drug development. In the past decade, a structure-based combinatorial protein-engineering approach has been used to generate ubiquitin variants (UbVs) as protein-based modulators of multiple components in the ubiquitin-proteasome system. Here, we review the design and generation of phage-displayed UbV libraries, including the processes of binder selection and library improvement. We also provide a comprehensive overview of the general in vitro and cellular methodologies involved in characterizing UbV binders. Finally, we describe two recent applications of UbVs for developing molecules with therapeutic potential.


Subject(s)
Cell Surface Display Techniques , Ubiquitin , Humans , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitination , Signal Transduction
2.
Nat Struct Mol Biol ; 30(11): 1663-1674, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37735619

ABSTRACT

Substrate polyubiquitination drives a myriad of cellular processes, including the cell cycle, apoptosis and immune responses. Polyubiquitination is highly dynamic, and obtaining mechanistic insight has thus far required artificially trapped structures to stabilize specific steps along the enzymatic process. So far, how any ubiquitin ligase builds a proteasomal degradation signal, which is canonically regarded as four or more ubiquitins, remains unclear. Here we present time-resolved cryogenic electron microscopy studies of the 1.2 MDa E3 ubiquitin ligase, known as the anaphase-promoting complex/cyclosome (APC/C), and its E2 co-enzymes (UBE2C/UBCH10 and UBE2S) during substrate polyubiquitination. Using cryoDRGN (Deep Reconstructing Generative Networks), a neural network-based approach, we reconstruct the conformational changes undergone by the human APC/C during polyubiquitination, directly visualize an active E3-E2 pair modifying its substrate, and identify unexpected interactions between multiple ubiquitins with parts of the APC/C machinery, including its coactivator CDH1. Together, we demonstrate how modification of substrates with nascent ubiquitin chains helps to potentiate processive substrate polyubiquitination, allowing us to model how a ubiquitin ligase builds a proteasomal degradation signal.


Subject(s)
Anaphase , Ubiquitin , Humans , Anaphase-Promoting Complex-Cyclosome/chemistry , Cryoelectron Microscopy , Ubiquitination , Ubiquitin/metabolism , Cell Cycle Proteins/metabolism
3.
Viruses ; 15(1)2022 12 21.
Article in English | MEDLINE | ID: mdl-36680065

ABSTRACT

Syrah decline, first identified in Southern France in the 1990s, has become a major concern in the global grape and wine industry. This disease mainly affects Syrah (Shiraz) grapevines. Characteristic symptoms include the bright and uniform reddening of leaves throughout the canopy in late summer or early fall; the appearance of abnormalities on the trunk, mainly at the graft union (swelling, pits, grooves, and necrosis); and a reduction in vine vigor, yield and berry quality. Diseased vines may die a few years after disease onset. Damages to the vine are even more pronounced in cool climate regions such as Ontario (Canada), where the affected vines are subjected to very cold and prolonged winters, leading to large numbers of vine deaths. Despite the extensive efforts of the global grape research community over the past few decades, the etiology of this disease remains unclear. In this study, we conducted extensive analyses of viruses in declining Syrah vines identified in commercial vineyards in the Niagara region (Ontario, Canada) through high-throughput sequencing, PCR, RT-PCR and the profiling of genetic variants of select viruses. Multiple viruses and viral strains, as well as three viroids, were identified. However, an unequivocal causal relationship cannot be established between Syrah decline and any of these viruses, although the possibility that certain virus or genetic variants, or both in combination, may contribute to the disease cannot be excluded. Gleaning all information that is available to date, we feel that the traditional approach and an insistence on finding a single cause for such a complex disorder in a woody perennial fruit crop involving grafting will prove to be futile. We hope that this study offers new conceptual perspectives on the etiology of this economically important but enigmatic disease complex that affects the global grape and wine industry.


Subject(s)
Vitis , Wine , Wine/analysis , Ontario , Fruit , Plant Leaves
4.
J Vis Exp ; (174)2021 08 27.
Article in English | MEDLINE | ID: mdl-34515691

ABSTRACT

Ubiquitin is a small 8.6 kDa protein that is a core component of the ubiquitin-proteasome system. Consequently, it can bind to a diverse array of proteins with high specificity but low affinity. Through phage display, ubiquitin variants (UbVs) can be engineered such that they exhibit improved affinity over wildtype ubiquitin and maintain binding specificity to target proteins. Phage display utilizes a phagemid library, whereby the pIII coat protein of a filamentous M13 bacteriophage (chosen because it is displayed externally on the phage surface) is fused with UbVs. Specific residues of human wildtype ubiquitin are soft and randomized (i.e., there is a bias towards to native wildtype sequence) to generate UbVs so that deleterious changes in protein conformation are avoided while introducing the diversity necessary for promoting novel interactions with the target protein. During the phage display process, these UbVs are expressed and displayed on phage coat proteins and panned against a protein of interest. UbVs that exhibit favorable binding interactions with the target protein are retained, whereas poor binders are washed away and removed from the library pool. The retained UbVs, which are attached to the phage particle containing the UbV's corresponding phagemid, are eluted, amplified, and concentrated so that they can be panned against the same target protein in another round of phage display. Typically, up to five rounds of phage display are performed, during which a strong selection pressure is imposed against UbVs that bind weakly and/or promiscuously so that those with higher affinities are concentrated and enriched. Ultimately, UbVs that demonstrate higher specificity and/or affinity for the target protein than their wildtype counterparts are isolated and can be characterized through further experiments.


Subject(s)
Ubiquitin-Protein Ligases , Ubiquitin , Bacteriophage M13 , Cell Surface Display Techniques , Humans , Peptide Library , Protein Conformation , Ubiquitin/genetics
5.
Protein Eng Des Sel ; 342021 02 15.
Article in English | MEDLINE | ID: mdl-34117768

ABSTRACT

Targeted inhibition of misregulated protein-protein interactions (PPIs) has been a promising area of investigation in drug discovery and development for human diseases. However, many constraints remain, including shallow binding surfaces and dynamic conformation changes upon interaction. A particularly challenging aspect is the undesirable off-target effects caused by inherent structural similarity among the protein families. To tackle this problem, phage display has been used to engineer PPIs for high-specificity binders with improved binding affinity and greatly reduced undesirable interactions with closely related proteins. Although general steps of phage display are standardized, library design is highly variable depending on experimental contexts. Here in this review, we examined recent advances in the structure-based combinatorial library design and the advantages and limitations of different approaches. The strategies described here can be explored for other protein-protein interactions and aid in designing new libraries or improving on previous libraries.


Subject(s)
Bacteriophages , Peptide Library , Bacteriophages/genetics , Cell Surface Display Techniques , Drug Discovery , Humans , Proteins
6.
Int J Mol Sci ; 22(2)2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33466790

ABSTRACT

Tumor microenvironments are composed of a myriad of elements, both cellular (immune cells, cancer-associated fibroblasts, mesenchymal stem cells, etc.) and non-cellular (extracellular matrix, cytokines, growth factors, etc.), which collectively provide a permissive environment enabling tumor progression. In this review, we focused on the regulation of tumor microenvironment through ubiquitination. Ubiquitination is a reversible protein post-translational modification that regulates various key biological processes, whereby ubiquitin is attached to substrates through a catalytic cascade coordinated by multiple enzymes, including E1 ubiquitin-activating enzymes, E2 ubiquitin-conjugating enzymes and E3 ubiquitin ligases. In contrast, ubiquitin can be removed by deubiquitinases in the process of deubiquitination. Here, we discuss the roles of E3 ligases and deubiquitinases as modulators of both cellular and non-cellular components in tumor microenvironment, providing potential therapeutic targets for cancer therapy. Finally, we introduced several emerging technologies that can be utilized to develop effective therapeutic agents for targeting tumor microenvironment.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Neoplasms/drug therapy , Signal Transduction/drug effects , Small Molecule Libraries/therapeutic use , Tumor Microenvironment/drug effects , Ubiquitin/metabolism , Angiogenesis Inhibitors/chemistry , Humans , Neoplasms/metabolism , Neoplasms/pathology , Small Molecule Libraries/chemistry , Ubiquitin-Activating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/drug effects
7.
Virus Res ; 244: 194-198, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29174718

ABSTRACT

Benzyloxycarbonyl-phenylalanyl-alanyl-fluoromethyl ketone (Z-FA-FMK) is a protease inhibitor that has been shown to strongly inhibit mammalian orthoreovirus replication. Here we explore the ability of Z-FA-FMK to inhibit three important yet genetically discrete aquatic fish viruses: chum salmon aquareovirus (CSRV), piscine orthoreovirus (PRV), and the rhabdovirus infectious hematopoietic necrosis virus (IHNV). Z-FA-FMK significantly attenuated CSRV in vitro transcription and infectious yield following low-dose (2-20µM) exposure, yet a relatively high dose (200µM) was required to completely block CSRV replication. For PRV and IHNV, no significant attenuation of in vitro viral transcription was observed following low-dose (2-20µM) exposure; and although high dose (200µM) exposure significantly attenuated both PRV and IHNV transcription, neither was completely inhibited. These transcriptional results were similarly reflected in IHNV infectious titre observed at 7days post exposure. PRV titre is currently undeterminable in vitro; however, in vivo intra-peritoneal injection of PRV into juvenile Atlantic salmon (Salmo salar) in conjunction with 1.5mg/kg Z-FA-FMK did not affect PRV replication as measured by blood associated viral transcripts at 14days post challenge. These results indicate that aquatic ortho- and aqua-reoviruses appear to possess resilience to Z-FA-FMK relative to mammalian orthoreoviruses and suggest that environmental parameters or alternative mechanisms for viral replication may affect the efficacy of Z-FA-FMK as an antireoviral compound. Further, as Z-FA-FMK has been shown to irreversibly inhibit cysteine proteases such as cathepsins B and L in vitro at concentrations of ≤100µM, continued replication of IHNV (and possibly PRV) at 200µM Z-FA-FMK suggests that replication of these viruses can occur in a cathepsin-independent manner whereas CSRV likely requires cathepsins or similar cysteine proteases for successful replication.


Subject(s)
Antiviral Agents/pharmacology , Cysteine Proteinase Inhibitors/pharmacology , Dipeptides/pharmacology , Fish Diseases/drug therapy , Infectious hematopoietic necrosis virus/drug effects , Ketones/pharmacology , Orthoreovirus/drug effects , Reoviridae/drug effects , Animals , Disease Resistance , Dose-Response Relationship, Drug , Fish Diseases/virology , Infectious hematopoietic necrosis virus/genetics , Infectious hematopoietic necrosis virus/metabolism , Orthoreovirus/genetics , Orthoreovirus/metabolism , Reoviridae/genetics , Reoviridae/metabolism , Reoviridae Infections/drug therapy , Reoviridae Infections/veterinary , Reoviridae Infections/virology , Rhabdoviridae Infections/drug therapy , Rhabdoviridae Infections/veterinary , Rhabdoviridae Infections/virology , Salmo salar/virology , Transcription, Genetic/drug effects , Viral Load/drug effects , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...