Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Environ Pollut ; 299: 118868, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35063546

ABSTRACT

Contamination of urban surface waters by herbicides is an increasing concern; however, sources of contamination are poorly understood, hindering the development of mitigation and regulatory strategies. Impervious surfaces, such as concrete in driveways and paths are considered an important facilitator for herbicide runoff to urban surface waters following applications by residential homeowners. This study assessed the transferability of a herbicide from concrete pavers treated with an off-the-shelf product, containing simazine as the active herbicide, marketed for residential homeowner application to impervious surfaces. Commercially available pavers were treated according to label directions and the effects of exposure time prior to irrigation, repeated irrigations, and dry time between irrigations on transferability of simazine to runoff were assessed. Simazine transferability was greatest when receiving an initial irrigation 1 h after application, with concentrations in runoff reduced by half when exposure times prior to the first irrigation were >2 days. Concentrations remained stable for repeated irrigations up to 320 days and exposures to outdoor conditions of 180 days prior to a first irrigation. Dry time between irrigations significantly influenced simazine transfer to runoff. Dry periods of 140 days resulted in approximately a 4-times increase in simazine transferability to runoff. These results suggest that herbicides used by homeowners, or any other users, on impervious surfaces are available to contaminate runoff for prolonged time periods following application at concentrations that may pose risks to aquatic life and for reuse of harvested runoff on parks and gardens. Regulators should consider the potential of hard surfaces to act as reservoirs for herbicides when developing policies and labelling products.


Subject(s)
Herbicides , Water Pollutants, Chemical , Herbicides/analysis , Simazine/analysis , Water Pollutants, Chemical/analysis
2.
Mar Pollut Bull ; 167: 112364, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33933897

ABSTRACT

This article provides an overview of the impacts of climate change stressors (temperature, ocean acidification, sea-level rise, and hypoxia) on estuarine and marine biota (algae, crustaceans, molluscs, corals, and fish). It also assessed possible/likely interactive impacts (combined impacts of climate change stressors and pollutants) on pollutants mobilization, pollutants toxicity (effects on growth, reproduction, mortality) and pollutants bioaccumulation in estuarine and marine biota. An increase in temperature and extreme events may enhance the release, degradation, transportation, and mobilization of both hydrophobic and hydrophilic pollutants in the estuarine and marine environments. Based on the available pollutants' toxicity trend data and information it reveals that the toxicity of several high-risk pollutants may increase with increasing levels of climate change stressors. It is likely that the interactive effects of climate change and pollutants may enhance the bioaccumulation of pollutants in seafood organisms. There is a paucity of literature relating to realistic interactive effects of climate change and pollutants. Therefore, future research should be directed towards the combined effects of climate change stressors and pollutants on estuarine and marine bota. A sustainable solution for pollution control caused by both greenhouse gas emissions (that cause climate change) and chemical pollutants would be required to safeguard the estuarine and marine biota.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Animals , Bioaccumulation , Biota , Climate Change , Hydrogen-Ion Concentration , Seafood , Seawater
3.
Environ Sci Pollut Res Int ; 24(8): 7274-7284, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28101712

ABSTRACT

Urban stormwater samples were collected from five aquatic systems in Melbourne, Australia, on six occasions between October 2011 and March 2012 and tested for 30 herbicides and 14 trace metals. Nineteen different herbicides were observed in one or more water samples from the five sites; chemicals observed at more than 40% of sites were simazine (100%), MCPA (83%), diuron (63%) and atrazine (53%). Using the toxicity unit (TU) concept to assess potential risk to aquatic ecosystems, none of the detected herbicides were considered to pose an individual, group or collective short-term risk to fish or zooplankton in the waters studied. However, 13 herbicides had TU values suggesting they might have posed an individual risk to primary producers at the time of sampling. Water quality guideline levels were exceeded on many occasions for Cd, Cu, Cr, Pb and Zn. Similarly, RQmed and RQmax exceeded 1 for Cd, Cr, Cu, Mn, Ni, Pb, V and Zn. Almost all the metals screened exceeded a log10TU of -3 for every trophic level, suggesting that there may have been some impact on aquatic organisms in the studied waterbodies. Our data indicate that Melbourne's urban aquatic environments may be being impacted by approved domestic, industrial and sporting application of herbicides and that stormwater quality needs to be carefully assessed prior to reuse. Further research is required to understand the performance of different urban stormwater wetland designs in removing pesticides and trace metals. Applying the precautionary principle to herbicide regulation is important to ensure there is more research and assessment of the long-term 'performance' standard of all herbicides and throughout their 'life cycle'. Implementing such an approach will also ensure government, regulators, decision makers, researchers, policy makers and industry have the best possible information available to improve the management of chemicals, from manufacture to use.


Subject(s)
Environmental Monitoring , Herbicides , Metals, Heavy , Water Pollutants, Chemical , Water/chemistry , Animals , Aquatic Organisms/drug effects , Australia , Fishes , Herbicides/analysis , Herbicides/toxicity , Metals, Heavy/analysis , Metals, Heavy/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
4.
Environ Sci Pollut Res Int ; 23(6): 5881-91, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26593725

ABSTRACT

Water and sediment samples were collected from up to 17 sites in waterways entering the Corner Inlet Marine National Park monthly between November 2009 and April 2010, with the Chemcatcher passive sampler system deployed at these sites in November 2009 and March 2010. Trace metal concentrations were low, with none occurring at concentrations with the potential for adverse ecological effects. The agrochemical residues data showed the presence of a small number of pesticides at very low concentration (ng/L) in the surface waters of streams entering the Corner Inlet, and as widespread, but still limited contamination of sediments. Concentrations of pesticides detected were relatively low and several orders of magnitude below reported ecotoxicological effect and hazardous concentration values. The low levels of pesticides detected in this study indicate that agricultural industries were responsible agrochemical users. This research project is a rarity in aligning both agrochemical usage data obtained from chemical resellers in the target catchment with residue analysis of environmental samples. Based on frequency of detection and concentrations, prometryn is the priority chemical of concern for both the water and sediments studied, but this chemical was not listed in reseller data. Consequently, the risks may be greater than the field data would suggest, and priorities for monitoring different since some commonly used herbicides (such as glyphosate, phenoxy acid herbicides, and sulfonyl urea herbicides) were not screened. Therefore, researchers, academia, industry, and government need to identify ways to achieve a more coordinated land use approach for obtaining information on the use of chemicals in a catchment, their presence in waterways, and the longer term performance of chemicals, particularly where they are used multiple times in a year.


Subject(s)
Geologic Sediments/chemistry , Pesticides/analysis , Water Pollutants, Chemical/analysis , Bays , Environmental Monitoring , Herbicides/analysis , Metals/analysis , Parks, Recreational , Rivers/chemistry , Trace Elements/analysis , Victoria
5.
Environ Sci Pollut Res Int ; 22(13): 10214-26, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25697552

ABSTRACT

Samples of water and sediments were collected from 24 urban wetlands in Melbourne, Australia, in April 2010, and tested for more than 90 pesticides using a range of gas chromatographic (GC) and liquid chromatographic (LC) techniques, sample 'hormonal' activity using yeast-based recombinant receptor-reporter gene bioassays, and trace metals using spectroscopic techniques. At the time of sampling, there was almost no estrogenic activity in the water column. Twenty-three different pesticide residues were observed in one or more water samples from the 24 wetlands; chemicals observed at more than 40% of sites were simazine (100%), atrazine (79%), and metalaxyl and terbutryn (46%). Using the toxicity unit (TU) concept, less than 15% of the detected pesticides were considered to pose an individual, short-term risk to fish or zooplankton in the ponds and wetlands. However, one pesticide (fenvalerate) may have posed a possible short-term risk to fish (log10TUf > -3), and three pesticides (azoxystrobin, fenamiphos and fenvalerate) may have posed a risk to zooplankton (logTUzp between -2 and -3); all the photosystem II (PSII) inhibiting herbicides may have posed a risk to primary producers in the ponds and wetlands (log10TUap and/or log10TUalg > -3). The wetland sediments were contaminated with 16 different pesticides; no chemicals were observed at more than one third of sites, but based on frequency of detection and concentrations, bifenthrin (33%, maximum 59 µg/kg) is the priority insecticide of concern for the sediments studied. Five sites returned a TU greater than the possible effect threshold (i.e. log10TU > 1) as a result of bifenthrin contamination of their sediments. Most sediments did not exceed Australian sediment quality guideline levels for trace metals. However, more than half of the sites had threshold effect concentration quotients (TECQ) values >1 for Cu (58%), Pb (50%), Ni (67%) and Zn (63%), and 75% of sites had mean probable effect concentration quotients (PECQ) >0.2, suggesting that the collected sediments may have been having some impact on sediment-dwelling organisms.


Subject(s)
Geologic Sediments/chemistry , Metals/analysis , Pesticides/analysis , Water Pollutants, Chemical/analysis , Wetlands , Animals , Environmental Monitoring , Fishes , Insecticides/analysis , Pesticide Residues/analysis , Ponds , Trace Elements/analysis , Victoria , Water/analysis
6.
Arch Environ Contam Toxicol ; 67(3): 358-73, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24935816

ABSTRACT

Herbicides are regularly applied in horticultural production systems and may migrate off-site, potentially posing an ecological risk to surface waterways. However, few studies have investigated the levels and potential ecotoxicological impact of herbicides in horticultural catchments in southern Australia. This study investigated the presence of 10 herbicides at 18 sites during a 5-month period in horticulturally important areas of the Yarra Valley in southeastern Australia. Seven of the 10 herbicides were detected in the streams, in 39 % of spot water samples, in 25 % of surface sediment samples, and in >70 % of the passive sampler systems deployed. Few samples contained residues of ≥2 herbicides. Simazine was the herbicide most frequently detected in water, sediment, and passive sampler samples and had the highest concentrations in water (0.67 µg/L) and sediment (260 µg/kg dry weight). Generally the concentrations of the herbicides detected were several orders of magnitude lower than reported ecotoxicological effect values, including those for aquatic plants and algae, suggesting that concentrations of individual chemicals in the catchment were unlikely to pose an ecological risk. However, little is known about the combined effects of simultaneous, low-level exposure of multiple herbicides of the same mode of action on Australian aquatic organisms nor their contribution when found in mixtures with other pesticides. Further research is required to adequately assess the risk of pesticides in Victorian aquatic environments.


Subject(s)
Environmental Monitoring , Fresh Water/chemistry , Herbicides/analysis , Water Pollutants, Chemical/analysis , Australia , Geologic Sediments/chemistry
7.
J Chromatogr A ; 1325: 56-64, 2014 Jan 17.
Article in English | MEDLINE | ID: mdl-24373535

ABSTRACT

The method presented uses a mixed-mode anion exchange SPE and liquid chromatography tandem mass spectrometry to analyze 5 sulfonylurea, 8 phenoxy acid, 12 triazine and 6 other herbicides in environmental waters. The mixed-mode SPE cartridge is able to retain a wide range of herbicides with acidic-neutral-basic characteristics, particularly the highly polar and acidic compounds clopyralid, dicamba and picloram. The neutral and basic herbicides can be effectively eluted with methanol, after which the acidic herbicides can be eluted using acidified methanol. The method has achieved an LOD of 0.7-3ng/L for the sulfonylureas, 4-12ng/L for the phenoxy acids and 0.4-30ng/L for the triazine and additional herbicides, with recoveries in the range 76-107%, 73-126%, and 65-104%, respectively. The precision of the method, calculated as relative standard deviation (RSD), was below 10% for both sulfonylurea and phenoxy acid herbicides, and less than 20% for the remaining herbicides. The developed method was used to determine the concentration of target herbicides in a range of environmental waters, and many of the target herbicides were detected at ng/L level.


Subject(s)
Chromatography, High Pressure Liquid/methods , Herbicides/analysis , Phenols/analysis , Solid Phase Extraction/methods , Sulfonylurea Compounds/analysis , Tandem Mass Spectrometry/methods , Triazines/analysis , Water Pollutants, Chemical/analysis , Acids/analysis , Picolinic Acids
8.
J Hazard Mater ; 263 Pt 2: 761-7, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24238476

ABSTRACT

Thirty-seven phosphorus (P)-containing compounds comprising organophosphorus pesticides and organophosphate esters were analyzed by using comprehensive two-dimensional gas chromatography with flame photometric detection in P mode (GC × GC-FPD(P)), with a non-polar/moderately polar column set. A suitable modulation temperature and period was chosen based on experimental observation. A number of co-eluting peak pairs on the (1)D column were well separated in 2D space. Excellent FPD(P) detection selectivity, responding to compounds containing the P atom, produces clear 2D GC × GC plots with little interference from complex hydrocarbon matrices. Limits of detection (LOD) were within the range of 0.0021-0.048 µmol L(-1), and linear calibration correlation coefficients (R(2)) for all 37 P-compounds were at least 0.998. The P-compounds were spiked in 2% diesel and good reproducibility for their response areas and retention times was obtained. Spiked recoveries were 88%-157% for 5 µg L(-1) and 80%-138% for 10 µg L(-1) spiked levels. Both (1)tR and (2)tR shifts were noted when the content of diesel was in excess of 5% in the matrix. Soil samples were analyzed by using the developed method; some P-compounds were positively detected. In general, this study shows that GC × GC-FPD(P) is an accurate, sensitive and simple method for P-compound analysis in complicated environmental samples.


Subject(s)
Chromatography, Gas/methods , Organophosphorus Compounds/analysis , Pesticides/chemistry , Soil Pollutants/analysis , Calibration , Chemical Warfare , Gasoline/analysis , Hydrocarbons/chemistry , Kerosene , Limit of Detection , Organophosphates/analysis , Organophosphorus Compounds/chemistry , Phosphorus , Photometry/methods , Sarin/analysis , Soil , Soman/analysis , Temperature
9.
Anal Bioanal Chem ; 405(30): 9869-77, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24126839

ABSTRACT

The results of validation of a method for the analysis of free and bound phenolics in wine and grapes are presented. Wine and grape extracts are fractionated by automated solid-phase extraction on Bond Elut PPL cartridges to give free and bound phenolic fractions. Bound fractions are subjected to acid hydrolysis, and the phenolics released are recovered by solid-phase extraction on Bond Elut PPL cartridges. The fractions are further purified by automated solid-phase extraction on Bond Elut silica cartridges. After derivatisation to form trimethylsilyl ethers, the phenolics are determined by gas chromatography-mass spectrometry with selected ion monitoring. The method is suitable for robust, high-throughput monitoring of the concentrations of phenolics that can affect the palatability of wine.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Phenols/analysis , Solid Phase Extraction , Vitis/chemistry , Wine/analysis , Automation
10.
J Chromatogr A ; 1311: 140-8, 2013 Oct 11.
Article in English | MEDLINE | ID: mdl-24011509

ABSTRACT

The present study discusses the relevance, performance and complementarities of flame photometric detector in phosphorus (FPD/P) and sulfur (FPD/S) modes, micro electron capture detector (µECD), nitrogen phosphorus detector (NPD), flame ionization detector (FID) and time-of-flight mass spectrometer (TOF/MS) for the comprehensive two-dimensional gas chromatography (GC×GC) analysis of pesticides. A mix of 41 pesticides including organophosphorus pesticides, synthetic pyrethroids and fungicides was investigated in order to benchmark GC×GC systems in terms of linearity (R(2)), limits of detection (LOD), and peak shape measures (widths and asymmetries). A mixture of pesticides which contained the heteroatoms phosphorus, sulfur, nitrogen and one or several halogens, was used to acquire a comparative data set to monitor relative detector performances. GC×GC datasets were systematically compared to their GC counterpart acquired with an optimized one-dimensional GC configuration. Compared with FID, considered the most appropriate detector in terms of suitability for GC×GC, the element-selective detector FPD/P and µECD best met the peak widths (0.13-0.27s for FPD/P; 0.22-0.26s for µECD) and tailing factors (0.99-1.66 for FPD/P; 1.32-1.52 for µECD); NPD exhibited similar peak widths (0.23-0.30s), but exceeded those of the above detectors for tailing factors (1.97-2.13). These three detectors had improved detection limits of 3-7 times and 4-20 times lower LODs in GC×GC mode compared with FID and TOF-MS, respectively. In contrast FPD/S had poor peak shape (tailing factor 3.36-5.12) and much lower sensitivity (10-20 fold lower compared to FPD/P). In general, element-selective detectors with favorable detection metrics can be considered viable alternatives for pesticide determination using GC×GC in complex matrices. The controversial issue of sensitivity enhancement in GC×GC was considered for optimized GC and GC×GC operation. For all detectors, we found no significant LOD enhancement in GC×GC.


Subject(s)
Chromatography, Gas/methods , Organophosphorus Compounds/analysis , Pesticides/analysis , Flame Ionization/methods , Limit of Detection
11.
Arch Environ Contam Toxicol ; 62(3): 380-90, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22037819

ABSTRACT

Fungicides are regularly applied in horticultural production systems and may migrate off-site, potentially posing an ecological risk to surface waterways. However, few studies have investigated the fate of fungicides in horticultural catchments. This study investigated the presence of 24 fungicides at 18 sites during a 5-month period within a horticultural catchment in southeastern Australia. Seventeen of the 24 fungicides were detected in the waterways, with fungicides detected in 63% of spot water samples, 44% of surface sediment samples, and 44% of the passive sampler systems deployed. One third of the water samples contained residues of two or more fungicides. Myclobutanil, trifloxystrobin, pyrimethanil, difenoconazole, and metalaxyl were the fungicides most frequently detected, being present in 16-38% of the spot water samples. Iprodione, myclobutanil, pyrimethanil, cyproconazole, trifloxystrobin, and fenarimol were found at the highest concentrations in the water samples (> 0.2 µg/l). Relatively high concentrations of myclobutanil and pyrimethanil (≥ 120 µg/kg dry weight) were detected in the sediment samples. Generally the concentrations of the fungicides detected were several orders of magnitude lower than reported ecotoxicological effect values, suggesting that concentrations of individual fungicides in the catchment were unlikely to pose an ecological risk. However, there is little information on the effects of fungicides, especially fungi and microbes, on aquatic ecosystems. There is also little known about the combined effects of simultaneous low-level exposure of multiple fungicides to aquatic organisms. Further research is required to adequately assess the risk of fungicides in aquatic environments.


Subject(s)
Fresh Water/chemistry , Fungicides, Industrial/analysis , Water Pollutants, Chemical/analysis , Agriculture , Environmental Monitoring , Geologic Sediments/chemistry , Victoria , Water Pollution, Chemical/statistics & numerical data
12.
Environ Sci Technol ; 45(4): 1665-72, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21247100

ABSTRACT

Grab water samples, sediment samples, and 2,2,4-trimethylpentane passive samplers (TRIMPS) were used to determine the exposure to 97 pesticides in 24 southeast Australian stream sites over 5 months. Macroinvertebrate communities and selected microorganisms (bacteria, flagellates, ciliates, amoebas, nematodes, and gastrotrichs) were sampled to detect relationships with pesticide toxicity. Sediment samples had the highest estimated toxicities in terms of toxic units (TU) for Daphnia magna (TUDM) and for Selenastrum capricornutum (TUSC). The pesticide-selective SPEARpesticides and the general SIGNAL index for macroinvertebrates exhibited negative linear relationships (r(2) = 0.67 and 0.36, respectively) with pesticide contamination in terms of log maximum TUDM (log mTUDM), suggesting macroinvertebrate community change due to pesticide exposure. Pesticide contamination was the only measured variable explaining variation in ecological quality. Variation in the densities of several microbial groups was best explained by environmental variables other than log TUs. The log mTUDM values derived from sediment concentrations were most important to establish a link with effects on macroinvertebrates, whereas log mTUDM of grab water samples had only minor contribution. Current-use insecticides and fungicides can affect macroinvertebrate communities and monitoring of sediment and continuous water sampling is needed to detect these effects.


Subject(s)
Invertebrates/drug effects , Pesticides/toxicity , Water Pollutants, Chemical/toxicity , Animals , Australia , Environmental Monitoring , Geologic Sediments , Population Dynamics , Rivers
13.
J Chromatogr A ; 1131(1-2): 203-14, 2006 Oct 27.
Article in English | MEDLINE | ID: mdl-16887126

ABSTRACT

Comprehensive two-dimensional gas chromatography (GCxGC) with nitrogen-phosphorus detection (NPD) has been investigated for the separation and quantitation of fungicides in vegetable samples. The detector gas flows (H(2), N(2) and air) were adjusted to achieve maximum response of signal whilst minimizing peak width. The comparison of different column sets and selection of the temperature program were carried out with a mixture of nine N-containing standard fungicides, eight of which were chlorinated. The results from GCxGC-NPD and GCxGC with micro electron-capture detection (muECD) were compared. External calibrations of fungicides were performed over a concentration range from 1 to 1,000 microgL(-1). The peak area calibration curves generally had regression coefficients of R(2)>0.9980, however for iprodione which was observed to undergo on-column degradation, an R(2) of 0.990 was found. The limit of detection (LOD) and limit of quantitation (LOQ) were less than about 74 and 246 ng L(-1), respectively. The intra-day and inter-day RSD values were measured for solutions of concentration 0.100, 0.500 and 1.50 mg L(-1). For the 0.500 mg L(-1) solution, intra- and inter-day precision of peak area and peak height for most of the pesticides were about 2% and 8%, respectively. Excellent linearity was observed for these standards, from 0.001 to 25.00 mg L(-1). The standard mixture peak positions were identified by using GCxGC with quadrupole mass spectrometry (qMS). To illustrate the potential and the versatility of both GCxGC-NPD and GCxGC-muECD, the method was applied to determination of fungicides in a vegetable extract. Decomposition of one fungicide standard (iprodione) during chromatography elution was readily observed in the two-dimensional (2D) GCxGC plot as a diagonal ridge response in the 2D chromatogram between the degrading compound and the decomposition product.


Subject(s)
Chromatography, Gas/methods , Pesticide Residues/analysis , Vegetables/chemistry , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/analysis , Aminoimidazole Carboxamide/chemistry , Calibration , Fungicides, Industrial/analysis , Fungicides, Industrial/chemistry , Hydantoins/analysis , Hydantoins/chemistry , Molecular Structure , Pesticide Residues/chemistry , Pesticide Residues/standards , Reference Standards , Reproducibility of Results , Triazoles/analysis , Triazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...