Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
2.
Lancet Neurol ; 22(9): 812-825, 2023 09.
Article in English | MEDLINE | ID: mdl-37596007

ABSTRACT

BACKGROUND: Most neonatal and infantile-onset epilepsies have presumed genetic aetiologies, and early genetic diagnoses have the potential to inform clinical management and improve outcomes. We therefore aimed to determine the feasibility, diagnostic yield, and clinical utility of rapid genome sequencing in this population. METHODS: We conducted an international, multicentre, cohort study (Gene-STEPS), which is a pilot study of the International Precision Child Health Partnership (IPCHiP). IPCHiP is a consortium of four paediatric centres with tertiary-level subspecialty services in Australia, Canada, the UK, and the USA. We recruited infants with new-onset epilepsy or complex febrile seizures from IPCHiP centres, who were younger than 12 months at seizure onset. We excluded infants with simple febrile seizures, acute provoked seizures, known acquired cause, or known genetic cause. Blood samples were collected from probands and available biological parents. Clinical data were collected from medical records, treating clinicians, and parents. Trio genome sequencing was done when both parents were available, and duo or singleton genome sequencing was done when one or neither parent was available. Site-specific protocols were used for DNA extraction and library preparation. Rapid genome sequencing and analysis was done at clinically accredited laboratories, and results were returned to families. We analysed summary statistics for cohort demographic and clinical characteristics and the timing, diagnostic yield, and clinical impact of rapid genome sequencing. FINDINGS: Between Sept 1, 2021, and Aug 31, 2022, we enrolled 100 infants with new-onset epilepsy, of whom 41 (41%) were girls and 59 (59%) were boys. Median age of seizure onset was 128 days (IQR 46-192). For 43 (43% [binomial distribution 95% CI 33-53]) of 100 infants, we identified genetic diagnoses, with a median time from seizure onset to rapid genome sequencing result of 37 days (IQR 25-59). Genetic diagnosis was associated with neonatal seizure onset versus infantile seizure onset (14 [74%] of 19 vs 29 [36%] of 81; p=0·0027), referral setting (12 [71%] of 17 for intensive care, 19 [44%] of 43 non-intensive care inpatient, and 12 [28%] of 40 outpatient; p=0·0178), and epilepsy syndrome (13 [87%] of 15 for self-limited epilepsies, 18 [35%] of 51 for developmental and epileptic encephalopathies, 12 [35%] of 34 for other syndromes; p=0·001). Rapid genome sequencing revealed genetic heterogeneity, with 34 unique genes or genomic regions implicated. Genetic diagnoses had immediate clinical utility, informing treatment (24 [56%] of 43), additional evaluation (28 [65%]), prognosis (37 [86%]), and recurrence risk counselling (all cases). INTERPRETATION: Our findings support the feasibility of implementation of rapid genome sequencing in the clinical care of infants with new-onset epilepsy. Longitudinal follow-up is needed to further assess the role of rapid genetic diagnosis in improving clinical, quality-of-life, and economic outcomes. FUNDING: American Academy of Pediatrics, Boston Children's Hospital Children's Rare Disease Cohorts Initiative, Canadian Institutes of Health Research, Epilepsy Canada, Feiga Bresver Academic Foundation, Great Ormond Street Hospital Charity, Medical Research Council, Murdoch Children's Research Institute, National Institute of Child Health and Human Development, National Institute for Health and Care Research Great Ormond Street Hospital Biomedical Research Centre, One8 Foundation, Ontario Brain Institute, Robinson Family Initiative for Transformational Research, The Royal Children's Hospital Foundation, University of Toronto McLaughlin Centre.


Subject(s)
Epilepsy , Seizures, Febrile , Male , Female , Infant, Newborn , Humans , Child , Pilot Projects , Cohort Studies , Feasibility Studies , Epilepsy/diagnosis , Epilepsy/genetics , Ontario
3.
Microb Genom ; 9(5)2023 05.
Article in English | MEDLINE | ID: mdl-37171244

ABSTRACT

Lineage 7 (L7) emerged in the phylogeny of the Mycobacterium tuberculosis complex (MTBC) subsequent to the branching of 'ancient' lineage 1 and prior to the Eurasian dispersal of 'modern' lineages 2, 3 and 4. In contrast to the major MTBC lineages, the current epidemiology suggests that prevalence of L7 is highly confined to the Ethiopian population, or when identified outside of Ethiopia, it has mainly been in patients of Ethiopian origin. To search for microbiological factors that may contribute to its restricted distribution, we compared the genome of L7 to the genomes of globally dispersed MTBC lineages. The frequency of predicted functional mutations in L7 was similar to that documented in other lineages. These include mutations characteristic of modern lineages - such as constitutive expression of nitrate reductase - as well as mutations in the VirS locus that are commonly found in ancient lineages. We also identified and characterized multiple lineage-specific mutations in L7 in biosynthesis pathways of cell wall lipids, including confirmed deficiency of methoxy-mycolic acids due to a stop-gain mutation in the mmaA3 gene that encodes a methoxy-mycolic acid synthase. We show that the abolished biosynthesis of methoxy-mycolates of L7 alters the cell structure and colony morphology on selected growth media and impacts biofilm formation. The loss of these mycolic acid moieties may change the host-pathogen dynamic for L7 isolates, explaining the limited geographical distribution of L7 and contributing to further understanding the spread of MTBC lineages across the globe.


Subject(s)
Mycobacterium tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Mycolic Acids/metabolism , Mutation , Phylogeny , Ethiopia/epidemiology
4.
Microbiol Spectr ; 9(2): e0109521, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34549992

ABSTRACT

Almost 140 years after the identification of Mycobacterium tuberculosis as the etiological agent of tuberculosis, important aspects of its biology remain poorly described. Little is known about the role of posttranscriptional control of gene expression and RNA biology, including the role of most of the small RNAs (sRNAs) identified to date. We have carried out a detailed investigation of the M. tuberculosis sRNA F6 and shown it to be dependent on SigF for expression and significantly induced in starvation conditions in vitro and in a mouse model of infection. Further exploration of F6 using an in vitro starvation model of infection indicates that F6 affects the expression of the essential chaperonins GroEL2 and GroES. Our results point toward a role for F6 during periods of low metabolic activity typically associated with long-term survival of M. tuberculosis in human granulomas. IMPORTANCE Control of gene expression via small regulatory RNAs (sRNAs) is poorly understood in one of the most successful pathogens, Mycobacterium tuberculosis. Here, we present an in-depth characterization of the sRNA F6, including its expression in different infection models and the differential gene expression observed upon deletion of the sRNA. Our results demonstrate that deletion of F6 leads to dysregulation of the two essential chaperonins GroEL2 and GroES and, moreover, indicate a role for F6 in the long-term survival and persistence of M. tuberculosis in the human host.


Subject(s)
Antigens, Bacterial/biosynthesis , Bacterial Proteins/biosynthesis , Chaperonin 60/biosynthesis , Gene Expression Regulation, Bacterial/genetics , Heat-Shock Proteins/biosynthesis , Mycobacterium tuberculosis/metabolism , RNA, Small Untranslated/genetics , Animals , Bacterial Proteins/genetics , Disease Models, Animal , Mice , Mice, Inbred BALB C , Mycobacterium tuberculosis/genetics , RNA, Bacterial/genetics , Sigma Factor/genetics , Starvation/pathology , Tuberculosis/pathology
5.
BMC Microbiol ; 21(1): 225, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34362295

ABSTRACT

BACKGROUND: Necrotising enterocolitis (NEC) is a devastating bowel disease, primarily affecting premature infants, with a poorly understood aetiology. Prior studies have found associations in different cases with an overabundance of particular elements of the faecal microbiota (in particular Enterobacteriaceae or Clostridium perfringens), but there has been no explanation for the different results found in different cohorts. Immunological studies have indicated that stimulation of the TLR4 receptor is involved in development of NEC, with TLR4 signalling being antagonised by the activated TLR9 receptor. We speculated that differential stimulation of these two components of the signalling pathway by different microbiota might explain the dichotomous findings of microbiota-centered NEC studies. Here we used shotgun metagenomic sequencing and qPCR to characterise the faecal microbiota community of infants prior to NEC onset and in a set of matched controls. Bayesian regression was used to segregate cases from control samples using both microbial and clinical data. RESULTS: We found that the infants suffering from NEC fell into two groups based on their microbiota; one with low levels of CpG DNA in bacterial genomes and the other with high abundances of organisms expressing LPS. The identification of these characteristic communities was reproduced using an external metagenomic validation dataset. We propose that these two patterns represent the stimulation of a common pathway at extremes; the LPS-enriched microbiome suggesting overstimulation of TLR4, whilst a microbial community with low levels of CpG DNA suggests reduction of the counterbalance to TLR4 overstimulation. CONCLUSIONS: The identified microbial community patterns support the concept of NEC resulting from TLR-mediated pathways. Identification of these signals suggests characteristics of the gastrointestinal microbial community to be avoided to prevent NEC. Potential pre- or pro-biotic treatments may be designed to optimise TLR signalling.


Subject(s)
Enterocolitis, Necrotizing/microbiology , Epithelial Cells/immunology , Gastrointestinal Microbiome/genetics , Infant, Premature, Diseases/microbiology , Toll-Like Receptor 4/immunology , Bayes Theorem , DNA, Bacterial/genetics , Enterocolitis, Necrotizing/immunology , Epithelial Cells/microbiology , Feces/microbiology , Humans , Infant , Infant, Newborn , Infant, Premature , Infant, Premature, Diseases/immunology , Metagenomics , RNA, Ribosomal, 16S/genetics , Toll-Like Receptor 4/genetics
6.
PLoS One ; 15(12): e0244681, 2020.
Article in English | MEDLINE | ID: mdl-33378384

ABSTRACT

BACKGROUND: Inhaled corticosteroids (ICS) are the mainstay of asthma treatment, but evidence suggests a link between ICS usage and increased rates of respiratory infections. We assessed the composition of the asthmatic airways microbiome in asthma patients taking low and high dose ICS and the stability of the microbiome over a 2 week period. METHODS: We prospectively recruited 55 individuals with asthma. Of these, 22 were on low-dose ICS and 33 on high-dose ICS (16 on budesonide, 17 on fluticasone propionate). Sputum from each subject underwent DNA extraction, amplification and 16S rRNA gene sequencing of the bacterial component of the microbiome. 19 subjects returned for further sputum induction after 24 h and 2 weeks. RESULTS: A total of 5,615,037 sequencing reads revealed 167 bacterial taxa in the asthmatic airway samples, with the most abundant being Streptococcus spp. No significant differences in sputum bacterial load or overall community composition were seen between the low- and high-dose ICS groups. However, Streptococcus spp. showed significantly higher relative abundance in subjects taking low-dose ICS (p = 0.002). Haemophilus parainfluenzae was significantly more abundant in subjects on high-dose fluticasone propionate than those on high-dose budesonide (p = 0.047). There were no statistically significant changes in microbiota composition over a 2-week period. DISCUSSION: Whilst no significant differences were observed between the low- and high-dose ICS groups, increased abundance of the potential pathogen H. parainfluenzae was observed in patients taking high-dose fluticasone propionate compared to those taking high-dose budesonide. The microbiota were stable over fourteen days, providing novel evidence of the established community of bacteria in the asthmatic airways. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov NCT02671773.


Subject(s)
Adrenal Cortex Hormones/administration & dosage , Anti-Asthmatic Agents/administration & dosage , Asthma/microbiology , Microbiota/drug effects , Respiratory Tract Infections/chemically induced , Sputum/microbiology , Administration, Inhalation , Adrenal Cortex Hormones/adverse effects , Adrenal Cortex Hormones/therapeutic use , Adult , Aged , Aged, 80 and over , Anti-Asthmatic Agents/adverse effects , Anti-Asthmatic Agents/therapeutic use , Asthma/drug therapy , Budesonide/administration & dosage , Budesonide/adverse effects , Budesonide/therapeutic use , Dose-Response Relationship, Drug , Fluticasone/administration & dosage , Fluticasone/adverse effects , Fluticasone/therapeutic use , Humans , Middle Aged , Prospective Studies , Respiratory Tract Infections/microbiology , Young Adult
7.
Genome Announc ; 5(46)2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29146836

ABSTRACT

BK polyomavirus is an important pathogen in kidney transplant patients. We report here two complete genome sequences, those of isolates CAMB-1035 and CAMB-1055, identified in two urine samples tested for urinary tract infection at a hospital in eastern England, United Kingdom. Variation and phylogenetic analyses indicate that both isolates belong to subtype Ib-1.

8.
PeerJ ; 5: e2928, 2017.
Article in English | MEDLINE | ID: mdl-28149696

ABSTRACT

BACKGROUND: Few studies have investigated the gut microbiome of infants, fewer still preterm infants. In this study we sought to quantify and interrogate the resistome within a cohort of premature infants using shotgun metagenomic sequencing. We describe the gut microbiomes from preterm but healthy infants, characterising the taxonomic diversity identified and frequency of antibiotic resistance genes detected. RESULTS: Dominant clinically important species identified within the microbiomes included C. perfringens, K. pneumoniae and members of the Staphylococci and Enterobacter genera. Screening at the gene level we identified an average of 13 antimicrobial resistance genes per preterm infant, ranging across eight different antibiotic classes, including aminoglycosides and fluoroquinolones. Some antibiotic resistance genes were associated with clinically relevant bacteria, including the identification of mecA and high levels of Staphylococci within some infants. We were able to demonstrate that in a third of the infants the S. aureus identified was unrelated using MLST or metagenome assembly, but low abundance prevented such analysis within the remaining samples. CONCLUSIONS: We found that the healthy preterm infant gut microbiomes in this study harboured a significant diversity of antibiotic resistance genes. This broad picture of resistances and the wider taxonomic diversity identified raises further caution to the use of antibiotics without consideration of the resident microbial communities.

9.
Genome Biol Evol ; 8(2): 411-25, 2016 Jan 18.
Article in English | MEDLINE | ID: mdl-26782933

ABSTRACT

Dosage compensation is the fundamental process by which gene expression from the male monosomic X chromosome and from the diploid set of autosomes is equalized. Various molecular mechanisms have evolved in different organisms to achieve this task. In Drosophila, genes on the male X chromosome are upregulated to the levels of expression from the two X chromosomes in females. To test whether a similar mechanism is operating in immature stages of Anopheles mosquitoes, we analyzed global gene expression in the Anopheles gambiae fourth instar larvae and pupae using high-coverage RNA-seq data. In pupae of both sexes, the median expression ratios of X-linked to autosomal genes (X:A) were close to 1.0, and within the ranges of expression ratios between the autosomal pairs, consistent with complete compensation. Gene-by-gene comparisons of expression in males and females revealed mild female bias, likely attributable to a deficit of male-biased X-linked genes. In larvae, male to female ratios of the X chromosome expression levels were more female biased than in pupae, suggesting that compensation may not be complete. No compensation mechanism appears to operate in male germline of early pupae. Confirmation of the existence of dosage compensation in A. gambiae lays the foundation for research into the components of dosage compensation machinery in this important vector species.


Subject(s)
Anopheles/genetics , Dosage Compensation, Genetic , Animals , Chromosomes, Insect/genetics , Female , Male , X Chromosome/genetics
10.
Int J Genomics ; 2015: 292950, 2015.
Article in English | MEDLINE | ID: mdl-26451363

ABSTRACT

Availability of fast, high throughput and low cost whole genome sequencing holds great promise within public health microbiology, with applications ranging from outbreak detection and tracking transmission events to understanding the role played by microbial communities in health and disease. Within clinical metagenomics, identifying microorganisms from a complex and host enriched background remains a central computational challenge. As proof of principle, we sequenced two metagenomic samples, a known viral mixture of 25 human pathogens and an unknown complex biological model using benchtop technology. The datasets were then analysed using a bioinformatic pipeline developed around recent fast classification methods. A targeted approach was able to detect 20 of the viruses against a background of host contamination from multiple sources and bacterial contamination. An alternative untargeted identification method was highly correlated with these classifications, and over 1,600 species were identified when applied to the complex biological model, including several species captured at over 50% genome coverage. In summary, this study demonstrates the great potential of applying metagenomics within the clinical laboratory setting and that this can be achieved using infrastructure available to nondedicated sequencing centres.

11.
Genome Announc ; 3(2)2015 Mar 26.
Article in English | MEDLINE | ID: mdl-25814591

ABSTRACT

Clostridium difficile is one of the leading causes of antibiotic-associated diarrhea in health care facilities worldwide. Here, we report the genome sequence of C. difficile strain G46, ribotype 027, isolated from an outbreak in Glamorgan, Wales, in 2006.

12.
PLoS One ; 8(12): e80047, 2013.
Article in English | MEDLINE | ID: mdl-24348997

ABSTRACT

Enhanced transcription of the Rv2660c locus in response to starvation of Mycobacterium tuberculosis H37Rv encouraged addition of the predicted Rv2660c protein to an improved vaccine formulation. Using strand-specific RNA sequencing, we show that the up-regulated transcript is in fact a small RNA encoded on the opposite strand to the annotated Rv2660c. The transcript originates within a prophage and is expressed only in strains that carry PhiRv2. The small RNA contains both host and phage sequences and provides a useful biomarker to monitor bacterial starvation during infection and/or non-replicating persistence. Using different approaches we do not find any evidence of Rv2660c at the level of mRNA or protein. Further efforts to understand the mechanism by which Rv2660c improves efficacy of the H56 vaccine are likely to provide insights into the pathology and immunology of tuberculosis.


Subject(s)
Bacterial Proteins/genetics , Mycobacterium tuberculosis/genetics , Cell Line , Humans , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/virology , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Tuberculosis/immunology , Virion/genetics
13.
Cell Rep ; 5(4): 1121-31, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24268774

ABSTRACT

Deciphering physiological changes that mediate transition of Mycobacterium tuberculosis between replicating and nonreplicating states is essential to understanding how the pathogen can persist in an individual host for decades. We have combined RNA sequencing (RNA-seq) of 5' triphosphate-enriched libraries with regular RNA-seq to characterize the architecture and expression of M. tuberculosis promoters. We identified over 4,000 transcriptional start sites (TSSs). Strikingly, for 26% of the genes with a primary TSS, the site of transcriptional initiation overlapped with the annotated start codon, generating leaderless transcripts lacking a 5' UTR and, hence, the Shine-Dalgarno sequence commonly used to initiate ribosomal engagement in eubacteria. Genes encoding proteins with active growth functions were markedly depleted from the leaderless transcriptome, and there was a significant increase in the overall representation of leaderless mRNAs in a starvation model of growth arrest. The high percentage of leaderless genes may have particular importance in the physiology of nonreplicating M. tuberculosis.


Subject(s)
5' Untranslated Regions/genetics , Gene Expression Regulation, Bacterial/genetics , Mycobacterium tuberculosis/genetics , Transcription Initiation Site , Chromosome Mapping , Gene Expression Profiling , Promoter Regions, Genetic , Sequence Analysis, RNA , Transcription, Genetic , Transcriptome/genetics
14.
Genome Biol Evol ; 5(10): 1849-62, 2013.
Article in English | MEDLINE | ID: mdl-24115728

ABSTRACT

Genome sequencing has identified an extensive repertoire of single nucleotide polymorphisms among clinical isolates of Mycobacterium tuberculosis, but the extent to which these differences influence phenotypic properties of the bacteria remains to be elucidated. To determine whether these polymorphisms give rise to phenotypic diversity, we have integrated genome data sets with RNA sequencing to assess their impact on the comparative transcriptome profiles of strains belonging to M. tuberculosis Lineages 1 and 2. We observed clear correlations between genotype and transcriptional phenotype. These arose by three mechanisms. First, lineage-specific changes in amino acid sequence of transcriptional regulators were associated with alterations in their ability to control gene expression. Second, changes in nucleotide sequence were associated with alteration of promoter activity and generation of novel transcriptional start sites in intergenic regions and within coding sequences. We show that in some cases this mechanism is expected to generate functionally active truncated proteins involved in innate immune recognition. Finally, genes showing lineage-specific patterns of differential expression not linked directly to primary mutations were characterized by a striking overrepresentation of toxin-antitoxin pairs. Taken together, these findings advance our understanding of mycobacterial evolution, contribute to a systems level understanding of this important human pathogen, and more broadly demonstrate the application of state-of-the-art techniques to provide novel insight into mechanisms by which intergenic and silent mutations contribute to diversity.


Subject(s)
Evolution, Molecular , Genetic Variation , Immunity, Innate/genetics , Mycobacterium tuberculosis/genetics , Tuberculosis/genetics , Amino Acid Sequence , Gene Expression Regulation, Bacterial , Genetic Association Studies , Humans , Mycobacterium tuberculosis/pathogenicity , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic , Sequence Analysis, RNA , Transcription Initiation Site , Tuberculosis/microbiology
15.
PLoS One ; 8(3): e58235, 2013.
Article in English | MEDLINE | ID: mdl-23472164

ABSTRACT

RATIONALE: Current tools available to study the molecular epidemiology of tuberculosis do not provide information about the directionality and sequence of transmission for tuberculosis cases occurring over a short period of time, such as during an outbreak. Recently, whole genome sequencing has been used to study molecular epidemiology of Mycobacterium tuberculosis over short time periods. OBJECTIVE: To describe the microevolution of M. tuberculosis during an outbreak caused by one drug-susceptible strain. METHOD AND MEASUREMENTS: We included 9 patients with tuberculosis diagnosed during a period of 22 months, from a population-based study of the molecular epidemiology in San Francisco. Whole genome sequencing was performed using Illumina's sequencing by synthesis technology. A custom program written in Python was used to determine single nucleotide polymorphisms which were confirmed by PCR product Sanger sequencing. MAIN RESULTS: We obtained an average of 95.7% (94.1-96.9%) coverage for each isolate and an average fold read depth of 73 (1 to 250). We found 7 single nucleotide polymorphisms among the 9 isolates. The single nucleotide polymorphisms data confirmed all except one known epidemiological link. The outbreak strain resulted in 5 bacterial variants originating from the index case A1 with 0-2 mutations per transmission event that resulted in a secondary case. CONCLUSIONS: Whole genome sequencing analysis from a recent outbreak of tuberculosis enabled us to identify microevolutionary events observable during transmission, to determine 0-2 single nucleotide polymorphisms per transmission event that resulted in a secondary case, and to identify new epidemiologic links in the chain of transmission.


Subject(s)
Evolution, Molecular , Mycobacterium tuberculosis/genetics , Sequence Analysis, DNA , Tuberculosis/microbiology , Adolescent , Adult , Disease Outbreaks , Genome, Bacterial , Genotype , Humans , Male , Mutation , Phylogeny , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , San Francisco , Tuberculosis/epidemiology , Young Adult
16.
Trends Genet ; 29(3): 160-9, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23245857

ABSTRACT

Recent surveillance data of multidrug-resistant tuberculosis (MDR-TB) reported the highest rates of resistance ever documented. As further amplification of resistance in MDR strains of Mycobacterium tuberculosis occurs, extensively drug-resistant (XDR) and totally drug-resistant (TDR) TB are beginning to emerge. Although for the most part, the epidemiological factors involved in the spread of MDR-TB are understood, insights into the bacterial drivers of MDR-TB have been gained only recently, largely owing to novel technologies and research in other organisms. Herein, we review recent findings on how bacterial factors, such as persistence, hypermutation, the complex interrelation between drug resistance and fitness, compensatory evolution, and epistasis affect the evolution of multidrug resistance in M. tuberculosis. Improved knowledge of these factors will help better predict the future trajectory of MDR-TB, and contribute to the development of new tools and strategies to combat this growing public health threat.


Subject(s)
Biological Evolution , Drug Resistance, Multiple, Bacterial/genetics , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/microbiology , Animals , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Epistasis, Genetic , Genetic Fitness , Humans , Tuberculosis, Multidrug-Resistant/drug therapy
17.
Nat Genet ; 44(1): 106-10, 2011 Dec 18.
Article in English | MEDLINE | ID: mdl-22179134

ABSTRACT

Epidemics of drug-resistant bacteria emerge worldwide, even as resistant strains frequently have reduced fitness compared to their drug-susceptible counterparts. Data from model systems suggest that the fitness cost of antimicrobial resistance can be reduced by compensatory mutations; however, there is limited evidence that compensatory evolution has any significant role in the success of drug-resistant bacteria in human populations. Here we describe a set of compensatory mutations in the RNA polymerase genes of rifampicin-resistant M. tuberculosis, the etiologic agent of human tuberculosis (TB). M. tuberculosis strains harboring these compensatory mutations showed a high competitive fitness in vitro. Moreover, these mutations were associated with high fitness in vivo, as determined by examining their relative clinical frequency across patient populations. Of note, in countries with the world's highest incidence of multidrug-resistant (MDR) TB, more than 30% of MDR clinical isolates had this form of mutation. Our findings support a role for compensatory evolution in the global epidemics of MDR TB.


Subject(s)
DNA-Directed RNA Polymerases/genetics , Drug Resistance, Bacterial/genetics , Mycobacterium tuberculosis/genetics , Rifampin/pharmacology , Tuberculosis, Multidrug-Resistant/genetics , Genome, Bacterial , Models, Molecular , Mutation , Mycobacterium tuberculosis/drug effects , Sequence Analysis, DNA , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/microbiology
18.
PLoS Pathog ; 7(11): e1002342, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22072964

ABSTRACT

RNA sequencing provides a new perspective on the genome of Mycobacterium tuberculosis by revealing an extensive presence of non-coding RNA, including long 5' and 3' untranslated regions, antisense transcripts, and intergenic small RNA (sRNA) molecules. More than a quarter of all sequence reads mapping outside of ribosomal RNA genes represent non-coding RNA, and the density of reads mapping to intergenic regions was more than two-fold higher than that mapping to annotated coding sequences. Selected sRNAs were found at increased abundance in stationary phase cultures and accumulated to remarkably high levels in the lungs of chronically infected mice, indicating a potential contribution to pathogenesis. The ability of tubercle bacilli to adapt to changing environments within the host is critical to their ability to cause disease and to persist during drug treatment; it is likely that novel post-transcriptional regulatory networks will play an important role in these adaptive responses.


Subject(s)
Mycobacterium tuberculosis/genetics , RNA, Bacterial/genetics , RNA, Untranslated/genetics , Transcriptome , Animals , Base Sequence , Gene Expression Regulation, Bacterial , Mice , Mice, Inbred C57BL , Mycobacterium tuberculosis/pathogenicity , Oligonucleotide Array Sequence Analysis , RNA, Bacterial/analysis , RNA, Untranslated/analysis , Sequence Analysis, RNA
19.
PLoS One ; 6(2): e17145, 2011 Feb 28.
Article in English | MEDLINE | ID: mdl-21386889

ABSTRACT

A scientist in our laboratory was accidentally infected while working with Z5463, a Neisseria meningitidis serogroup A strain. She developed severe symptoms (fever, meningism, purpuric lesions) that fortunately evolved with antibiotic treatment to complete recovery. Pulse-field gel electrophoresis confirmed that the isolate obtained from the blood culture (Z5463BC) was identical to Z5463, more precisely to a fourth subculture of this strain used the week before the contamination (Z5463PI). In order to get some insights into genomic modifications that can occur in vivo, we sequenced these three isolates. All the strains contained a mutated mutS allele and therefore displayed an hypermutator phenotype, consistent with the high number of mutations (SNP, Single Nucleotide Polymorphism) detected in the three strains. By comparing the number of SNP in all three isolates and knowing the number of passages between Z5463 and Z5463PI, we concluded that around 25 bacterial divisions occurred in the human body. As expected, the in vivo passage is responsible for several modifications of phase variable genes. This genomic study has been completed by transcriptomic and phenotypic studies, showing that the blood strain used a different haemoglobin-linked iron receptor (HpuA/B) than the parental strains (HmbR). Different pilin variants were found after the in vivo passage, which expressed different properties of adhesion. Furthermore the deletion of one gene involved in LOS biosynthesis (lgtB) results in Z5463BC expressing a different LOS than the L9 immunotype of Z2491. The in vivo passage, despite the small numbers of divisions, permits the selection of numerous genomic modifications that may account for the high capacity of the strain to disseminate.


Subject(s)
Antigenic Variation , Cross Infection/microbiology , Genetic Variation , Meningococcal Infections/microbiology , Neisseria meningitidis/genetics , Neisseria meningitidis/immunology , Accidents, Occupational , Adult , Antigenic Variation/genetics , Antigenic Variation/physiology , Cross Infection/genetics , Cross Infection/immunology , Female , Genotype , Humans , Medical Laboratory Personnel , Meningococcal Infections/genetics , Meningococcal Infections/immunology , Meningococcal Infections/transmission , Neisseria meningitidis/physiology , Phenotype
20.
Proc Natl Acad Sci U S A ; 107(16): 7527-32, 2010 Apr 20.
Article in English | MEDLINE | ID: mdl-20368420

ABSTRACT

Clostridium difficile has rapidly emerged as the leading cause of antibiotic-associated diarrheal disease, with the transcontinental spread of various PCR ribotypes, including 001, 017, 027 and 078. However, the genetic basis for the emergence of C. difficile as a human pathogen is unclear. Whole genome sequencing was used to analyze genetic variation and virulence of a diverse collection of thirty C. difficile isolates, to determine both macro and microevolution of the species. Horizontal gene transfer and large-scale recombination of core genes has shaped the C. difficile genome over both short and long time scales. Phylogenetic analysis demonstrates C. difficile is a genetically diverse species, which has evolved within the last 1.1-85 million years. By contrast, the disease-causing isolates have arisen from multiple lineages, suggesting that virulence evolved independently in the highly epidemic lineages.


Subject(s)
Clostridioides difficile/genetics , Evolution, Molecular , Computational Biology , Gene Expression Regulation, Bacterial , Gene Transfer Techniques , Genome, Bacterial , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Recombination, Genetic , Sequence Analysis, DNA , Species Specificity , Time Factors , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...