Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 25(48): 33000-33012, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38032096

ABSTRACT

The orange carotenoid protein (OCP) functions as a sensor of the ambient light intensity and as a quencher of bilin excitons when it binds to the core of the cyanobacterial phycobilisome. We show herein that the photoactivation mechanism that converts the resting, orange-colored state, OCPO, to the active red-colored state, OCPR, requires a sequence of two reactions, each requiring absorption of a single photon by an intrinsic ketocarotenoid chromophore. Global analysis of absorption spectra recorded during continuous illumination of OCPO preparations from Synechocystis sp. PCC 6803 detects the reversible formation of a metastable intermediate, OCPI, in which the ketocarotenoid canthaxanthin exhibits an absorption spectrum with a partial red shift and a broadened vibronic structure compared to that of the OCPO state. While the dark recovery from OCPR to OCPI is a first-order, unimolecular reaction, the subsequent conversion of OCPI to the resting OCPO state is bimolecular, involving association of two OCPO monomers to form the dark-stable OCPO dimer aggregate. These results indicate that photodissociation of the OCPO dimer to form the monomeric OCPO intermediate is the first step in the photoactivation mechanism. Formation of the OCPO monomer from the dimer increases the mean value and broadens the distribution of the solvent-accessible surface area of the canthaxanthin chromophore measured in molecular dynamics trajectories at 300 K. The second step in the photoactivation mechanism is initiated by absorption of a second photon, by canthaxanthin in the OCPO monomer, which obtains the fully red-shifted and broadened absorption spectrum detected in the OCPR product state owing to displacement of the C-terminal domain and the translocation of canthaxanthin more than 12 Å into the N-terminal domain. Both steps in the photoactivation reaction of OCP are likely to involve changes in the structure of the C-terminal domain elicited by excited-state conformational motions of the ketocarotenoid.


Subject(s)
Bacterial Proteins , Synechocystis , Bacterial Proteins/chemistry , Canthaxanthin , Light , Synechocystis/metabolism , Carotenoids/chemistry
2.
Nat Chem ; 14(11): 1286-1294, 2022 11.
Article in English | MEDLINE | ID: mdl-36123451

ABSTRACT

The phycobilisome is an oligomeric chromoprotein complex that serves as the principal mid-visible light-harvesting system in cyanobacteria. Here we report the observation of excitation-energy-transfer pathways involving delocalized optical excitations of the bilin (linear tetrapyrrole) chromophores in intact phycobilisomes isolated from Fremyella diplosiphon. By using broadband multidimensional electronic spectroscopy with 6.7-fs laser pulses, we are able to follow the progress of excitation energy from the phycoerythrin disks at the ends of the phycobilisome's rods to the C-phycocyanin disks along their length in <600 fs. Oscillation maps show that coherent wavepacket motions prominently involving the hydrogen out-of-plane vibrations of the bilins mediate non-adiabatic relaxation of a manifold of vibronic exciton states. However, the charge-transfer character of the bilins in the allophycocyanin-containing segments localizes the excitations in the core of the phycobilisome, yielding a kinetic bottleneck that enables photoregulatory mechanisms to operate efficiently on the >10-ps timescale.


Subject(s)
Light , Phycobilisomes , Phycobilisomes/metabolism , Energy Transfer , Kinetics
3.
Methods Enzymol ; 674: 85-111, 2022.
Article in English | MEDLINE | ID: mdl-36008021

ABSTRACT

The function of carotenoids in carotenoproteins is optimized by the electrostatic and steric interactions between the carotenoid and its surrounding binding site. Binding to the protein distorts the conformation of the carotenoid and induces a charge-transfer character. This chapter shows how the line shape of the fluorescence spectrum, the fluorescence quantum yield, and the fluorescence anisotropy of the second excited singlet state of a carotenoid, S2, can be used to probe the structure and dynamics of carotenoids in carotenoproteins. The experimental approach and a brief introduction to the theory we used to detect hydrogen bonding interactions with the active ketocarotenoids in the orange carotenoid protein are discussed here as an example. Fluorescence anisotropy is then introduced as a probe of the conformational motions that follow optical excitation of a carotenoid using results from a study of ß-carotene in solution over a range of temperatures.


Subject(s)
Carotenoids , Proteins , Binding Sites , Carotenoids/metabolism , Fluorescence , Molecular Conformation , Protein Domains
4.
J Chem Phys ; 155(3): 035103, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34293883

ABSTRACT

The nonadiabatic mechanism that mediates nonradiative decay of the bright S2 state to the dark S1 state of carotenoids involves population of a bridging intermediate state, Sx, in several examples. The nature of Sx remains to be determined definitively, but it has been recently suggested that Sx corresponds to conformationally distorted molecules evolving along out-of-plane coordinates of the isoprenoid backbone near a low barrier between planar and distorted conformations on the S2 potential surface. In this study, the electronic and vibrational dynamics accompanying the formation of Sx in toluene solutions of the ketocarotenoid canthaxanthin (CAN) are characterized with broadband two-dimensional electronic spectroscopy (2DES) with 7.8 fs excitation pulses and detection of the linear polarization components of the third-order nonlinear optical signal. A stimulated-emission cross peak in the 2DES spectrum accompanies the formation of Sx in <20 fs following excitation of the main absorption band. Sx is prepared instantaneously, however, with excitation of hot-band transitions associated with distorted conformations of CAN's isoprenoid backbone in the low frequency onset of the main absorption band. Vibrational coherence oscillation maps and modulated anisotropy transients show that Sx undergoes displacements from the Franck-Condon S2 state along out-of-plane coordinates as it passes to the S1 state. The results are consistent with the conclusion that CAN's carbonyl-substituted ß-ionone rings impart an intramolecular charge-transfer character that frictionally slows the passage from Sx to S1 compared to carotenoids lacking carbonyl substitution. Despite the longer lifetime, the S1 state of CAN is formed with retention of vibrational coherence after passing through a conical intersection seam with the Sx state.

5.
J Phys Chem B ; 124(41): 9029-9046, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32955881

ABSTRACT

Carotenoids are usually only weakly fluorescent despite being very strong absorbers in the mid-visible region because their first two excited singlet states, S1 and S2, have very short lifetimes. To probe the structural mechanisms that promote the nonradiative decay of the S2 state to the S1 state, we have carried out a series of fluorescence lineshape and anisotropy measurements with a prototype carotenoid, ß-carotene, in four aprotic solvents. The anisotropy values observed in the fluorescence emission bands originating from the S2 and S1 states reveal that the large internal rotations of the emission transition dipole moment, as much as 50° relative to that of the absorption transition dipole moment, are initiated during ultrafast evolution on the S2 state potential energy surface and persist upon nonradiative decay to the S1 state. Electronic structure calculations of the orientation of the transition dipole moment account for the anisotropy results in terms of torsional and pyramidal distortions near the center of the isoprenoid backbone. The excitation wavelength dependence of the fluorescence anisotropy indicates that these out-of-plane conformational motions are initiated by passage over a low-activation energy barrier from the Franck-Condon S2 structure. This conclusion is consistent with detection over the 80-200 K range of a broad, red-shifted fluorescence band from a dynamic intermediate evolving on a steep gradient of the S2 state potential energy surface after crossing the activation barrier. The temperature dependence of the oscillator strength and anisotropy indicate that nonadiabatic passage from S2 through a conical intersection seam to S1 is promoted by the out-of-plane motions of the isoprenoid backbone with strong hindrance by solvent friction.

SELECTION OF CITATIONS
SEARCH DETAIL
...