Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Respir Physiol Neurobiol ; 307: 103964, 2023 01.
Article in English | MEDLINE | ID: mdl-36174962

ABSTRACT

Effective cough requires a significant increase in lung volume used to produce the shear forces on the airway to clear aspirated material. This increase in tidal volume during cough, along with an increase in tidal frequency during bouts of paroxysmal cough produces profound hyperventilation and thus reduces arterial CO2. While there are several reports in the literature regarding the effects of hypercapnia, hyperoxia, and hypoxia on cough, there is little research quantifying the effects of hypocapnia on the cough reflex. We hypothesized that decreased CO2 would enhance coughing. In 12 spontaneously breathing adult male cats, we compared bouts of prolonged mechanically stimulated cough, in which cough induced hyperventilation (CHV) was allowed to occur, with isocapnic cough trials where we maintained eupneic end-tidal CO2 by adding CO2 to the inspired gas. Isocapnia slightly increased cough number and decreased esophageal pressures with no change in EMG magnitudes or phase durations. The cough-to-eupnea transition was also analyzed between CHV, isocapnia, and a third group of animals that were mechanically hyperventilated to apnea. The transition to eupnea was highly sensitive to added CO2, and CHV apneas were much shorter than those produced by mechanical hyperventilation. We suggest that the cough pattern generator is relatively insensitive to CHV. In the immediate post-cough period, the appearance of breathing while CO2 is very low suggests a transient reduction in apneic threshold following a paroxysmal cough bout.


Subject(s)
Carbon Dioxide , Hyperventilation , Animals , Male , Cough , Hypocapnia , Respiration , Apnea
2.
Respir Physiol Neurobiol ; 296: 103805, 2022 02.
Article in English | MEDLINE | ID: mdl-34678475

ABSTRACT

Recurrent laryngeal afferent fibers are primarily responsible for cough in response to mechanical or chemical stimulation of the upper trachea and larynx in the guinea pig. Lower airway slowly adapting receptors have been proposed to have a permissive effect on the cough reflex. We hypothesized that vagotomy below the recurrent laryngeal nerve branch would depress mechanically or chemically induced cough. In anesthetized, bilaterally thoracotomized, artificially ventilated cats, thoracic vagotomy nearly eliminated cough induced by mechanical stimulation of the intrathoracic airway, significantly depressed mechanically stimulated laryngeal cough, and eliminated capsaicin-induced cough. These results support an important role of lower airway sensory feedback in the production of tracheobronchial and laryngeal cough in the cat. Further, at least some of this feedback is due to excitation from pulmonary volume-sensitive sensory receptors.


Subject(s)
Cough/physiopathology , Laryngeal Nerves/physiology , Pulmonary Stretch Receptors/physiology , Reflex/physiology , Respiratory System/innervation , Vagotomy , Anesthesia , Animals , Cats , Disease Models, Animal , Female , Male
3.
J Neurophysiol ; 127(1): 267-278, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34879205

ABSTRACT

Brainstem respiratory neuronal network significantly contributes to cough motor pattern generation. Neuronal populations in the pre-Bötzinger complex (PreBötC) represent a substantial component for respiratory rhythmogenesis. We studied the role of PreBötC neuronal excitation and inhibition on mechanically induced tracheobronchial cough in 15 spontaneously breathing, pentobarbital anesthetized adult cats (35 mg/kg, iv initially). Neuronal excitation by unilateral microinjection of glutamate analog d,l-homocysteic acid resulted in mild reduction of cough abdominal electromyogram (EMG) amplitudes and very limited temporal changes of cough compared with effects on breathing (very high respiratory rate, high amplitude inspiratory bursts with a short inspiratory phase, and tonic inspiratory motor component). Mean arterial blood pressure temporarily decreased. Blocking glutamate-related neuronal excitation by bilateral microinjections of nonspecific glutamate receptor antagonist kynurenic acid reduced cough inspiratory and expiratory EMG amplitude and shortened most cough temporal characteristics similarly to breathing temporal characteristics. Respiratory rate decreased and blood pressure temporarily increased. Limiting active neuronal inhibition by unilateral and bilateral microinjections of GABAA receptor antagonist gabazine resulted in lower cough number, reduced expiratory cough efforts, and prolongation of cough temporal features and breathing phases (with lower respiratory rate). The PreBötC is important for cough motor pattern generation. Excitatory glutamatergic neurotransmission in the PreBötC is involved in control of cough intensity and patterning. GABAA receptor-related inhibition in the PreBötC strongly affects breathing and coughing phase durations in the same manner, as well as cough expiratory efforts. In conclusion, differences in effects on cough and breathing are consistent with separate control of these behaviors.NEW & NOTEWORTHY This study is the first to explore the role of the inspiratory rhythm and pattern generator, the pre-Bötzinger complex (PreBötC), in cough motor pattern formation. In the PreBötC, excitatory glutamatergic neurotransmission affects cough intensity and patterning but not rhythm, and GABAA receptor-related inhibition affects coughing and breathing phase durations similarly to each other. Our data show that the PreBötC is important for cough motor pattern generation, but cough rhythmogenesis appears to be controlled elsewhere.


Subject(s)
Central Pattern Generators , Cough , Excitatory Amino Acid Antagonists/pharmacology , GABA-A Receptor Antagonists/pharmacology , Glutamic Acid/pharmacology , Inhalation , Medulla Oblongata , Reflex , Respiratory Rate , Abdominal Muscles/drug effects , Abdominal Muscles/physiopathology , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Cats , Central Pattern Generators/drug effects , Central Pattern Generators/metabolism , Central Pattern Generators/physiopathology , Cough/drug therapy , Cough/metabolism , Cough/physiopathology , Electromyography , Excitatory Amino Acid Antagonists/administration & dosage , Female , GABA-A Receptor Antagonists/administration & dosage , Glutamic Acid/administration & dosage , Glutamic Acid/analysis , Homocysteine/analogs & derivatives , Homocysteine/pharmacology , Inhalation/drug effects , Inhalation/physiology , Kynurenic Acid/pharmacology , Male , Medulla Oblongata/drug effects , Medulla Oblongata/metabolism , Medulla Oblongata/physiopathology , Pyridazines/pharmacology , Reflex/drug effects , Reflex/physiology , Respiratory Rate/drug effects , Respiratory Rate/physiology
4.
PLoS One ; 16(6): e0253060, 2021.
Article in English | MEDLINE | ID: mdl-34153070

ABSTRACT

The role of the cerebellum in controlling the cough motor pattern is not well understood. We hypothesized that cerebellectomy would disinhibit motor drive to respiratory muscles during cough. Cough was induced by mechanical stimulation of the tracheobronchial airways in anesthetized, spontaneously breathing adult cats (8 male, 1 female), and electromyograms (EMGs) were recorded from upper airway, chest wall, and abdominal respiratory muscles. Cough trials were performed before and at two time points after total cerebellectomy (10 minutes and >1 hour). Unlike a prior report in paralyzed, decerebrated, and artificially ventilated animals, we observed that cerebellectomy had no effect on cough frequency. After cerebellectomy, thoracic inspiratory muscle EMG magnitudes increased during cough (diaphragm EMG increased by 14% at 10 minutes, p = 0.04; parasternal by 34% at 10 minutes and by 32% at >1 hour, p = 0.001 and 0.03 respectively). During cough at 10 minutes after cerebellectomy, inspiratory esophageal pressure was increased by 44% (p = 0.004), thyroarytenoid (laryngeal adductor) muscle EMG amplitude increased 13% (p = 0.04), and no change was observed in the posterior cricoarytenoid (laryngeal abductor) EMG. Cough phase durations did not change. Blood pressure and heart rate were reduced after cerebellectomy, and respiratory rate also decreased due to an increase in duration of the expiratory phase of breathing. Changes in cough-related EMG magnitudes of respiratory muscles suggest that the cerebellum exerts inhibitory control of cough motor drive, but not cough number or phase timing in response to mechanical stimuli in this model early after cerebellectomy. However, results varied widely at >1 hour after cerebellectomy, with some animals exhibiting enhancement or suppression of one or more components of the cough motor behavior. These results suggest that, while the cerebellum and behavior-related sensory feedback regulate cough, it may be difficult to predict the nature of the modulation based on total cerebellectomy.


Subject(s)
Blood Pressure , Cerebellum/surgery , Cough/physiopathology , Heart Rate , Respiration , Respiratory Muscles/physiopathology , Animals , Cats , Female , Male
5.
PLoS One ; 13(7): e0199903, 2018.
Article in English | MEDLINE | ID: mdl-30024913

ABSTRACT

Active contraction of the diaphragm and other inspiratory pump muscles during swallow create a negative thoracic pressure to improve the movement of the bolus (food/liquid) into the esophagus. We tested the hypothesis that dorsomedial medullary inspiratory neurons, including the nucleus tractus solitarius (NTS, pre-motor to the phrenic) would be active during swallow induced by oral water infusion. We recorded neurons in the NTS and medial reticular formation in anesthetized spontaneously breathing cats, and induced swallow by injection of water into the oropharynx. Our results indicate that: 1) a majority of inspiratory cells in the dorsomedial medulla are active during swallow, 2) expiratory neurons are present in the medial reticular formation (deeper to the NTS) in unparalyzed cats and a majority of these cells decreased firing frequency during swallow. Our findings suggest that the dorsomedial medulla is a source of inspiratory motor drive during swallow and that a novel population of breathing-modulated neurons that also are modulated during swallowing exist in the medial reticular formation in unparalyzed animals.


Subject(s)
Central Pattern Generators/physiology , Deglutition , Inhalation , Medulla Oblongata/physiology , Neurons/physiology , Animals , Cats , Male , Medulla Oblongata/cytology
7.
J Neurophysiol ; 117(6): 2179-2187, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28250153

ABSTRACT

The importance of neurons in the nucleus of the solitary tract (NTS) in the production of coughing was tested by microinjections of the nonspecific glutamate receptor antagonist kynurenic acid (kyn; 100 mM in artificial cerebrospinal fluid) in 15 adult spontaneously breathing anesthetized cats. Repetitive coughing was elicited by mechanical stimulation of the intrathoracic airway. Electromyograms (EMG) were recorded from inspiratory parasternal and expiratory transversus abdominis (ABD) muscles. Bilateral microinjections of kyn into the NTS rostral to obex [55 ± 4 nl total in 2 locations (n = 6) or 110 ± 4 nl total in 4 locations (n = 5)], primarily the ventrolateral subnucleus, reduced cough number and expiratory cough efforts (amplitudes of ABD EMG and maxima of esophageal pressure) compared with control. These microinjections also markedly prolonged the inspiratory phase, all cough-related EMG activation, and the total cough cycle duration as well as some other cough-related time intervals. In response to microinjections of kyn into the NTS rostral to the obex respiratory rate decreased, and there were increases in the durations of the inspiratory and postinspiratory phases and mean blood pressure. However, bilateral microinjections of kyn into the NTS caudal to obex as well as control vehicle microinjections in the NTS location rostral to obex had no effect on coughing or cardiorespiratory variables. These results are consistent with the existence of a critical component of the cough rhythmogenic circuit located in the rostral ventral and lateral NTS. Neuronal structures of the rostral NTS are significantly involved specifically in the regulation of cough magnitude and phase timing.NEW & NOTEWORTHY The nucleus of the solitary tract contains significant neuronal structures responsible for control of 1) cough excitability, 2) motor drive during cough, 3) cough phase timing, and 4) cough rhythmicity. Significant elimination of neurons in the solitary tract nucleus results in cough apraxia (incomplete and/or disordered cough pattern). The mechanism of the cough impairment is different from that for the concomitant changes in breathing.


Subject(s)
Cough/physiopathology , Solitary Nucleus/physiopathology , Abdominal Muscles/drug effects , Abdominal Muscles/physiopathology , Animals , Blood Pressure/drug effects , Blood Pressure/physiology , Cats , Dose-Response Relationship, Drug , Electromyography , Excitatory Amino Acid Antagonists/pharmacology , Female , Kynurenic Acid/pharmacology , Male , Microinjections , Periodicity , Physical Stimulation , Respiration/drug effects , Respiratory Muscles/drug effects , Respiratory Muscles/physiopathology , Solitary Nucleus/drug effects , Time Factors
8.
J Appl Physiol (1985) ; 121(1): 268-78, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27283917

ABSTRACT

We investigated the hypothesis, motivated in part by a coordinated computational cough network model, that second-order neurons in the nucleus tractus solitarius (NTS) act as a filter and shape afferent input to the respiratory network during the production of cough. In vivo experiments were conducted on anesthetized spontaneously breathing cats. Cough was elicited by mechanical stimulation of the intrathoracic airways. Electromyograms of the parasternal (inspiratory) and rectus abdominis (expiratory) muscles and esophageal pressure were recorded. In vivo data revealed that expiratory motor drive during bouts of repetitive coughs is variable: peak expulsive amplitude increases from the first cough, peaks about the eighth or ninth cough, and then decreases through the remainder of the bout. Model simulations indicated that feed-forward inhibition of a single second-order neuron population is not sufficient to account for this dynamic feature of a repetitive cough bout. When a single second-order population was split into two subpopulations (inspiratory and expiratory), the resultant model produced simulated expiratory motor bursts that were comparable to in vivo data. However, expiratory phase durations during these simulations of repetitive coughing had less variance than those in vivo. Simulations in which reciprocal inhibitory processes between inspiratory-decrementing and expiratory-augmenting-late neurons were introduced exhibited increased variance in the expiratory phase durations. These results support the prediction that serial and parallel processing of airway afferent signals in the NTS play a role in generation of the motor pattern for cough.


Subject(s)
Cough/physiopathology , Animals , Cats , Computer Simulation , Esophagus/physiopathology , Inhibition, Psychological , Male , Motor Cortex/physiopathology , Neurons/physiology , Pressure , Respiration , Respiratory Muscles/physiopathology
9.
PLoS One ; 10(5): e0128245, 2015.
Article in English | MEDLINE | ID: mdl-26020240

ABSTRACT

Diseases affecting pulmonary mechanics often result in changes to the coordination of swallow and breathing. We hypothesize that during times of increased intrathoracic pressure, swallow suppresses ongoing expiratory drive to ensure bolus transport through the esophagus. To this end, we sought to determine the effects of swallow on abdominal electromyographic (EMG) activity during expiratory threshold loading in anesthetized cats and in awake-healthy adult humans. Expiratory threshold loads were applied to recruit abdominal motor activity during breathing, and swallow was triggered by infusion of water into the mouth. In both anesthetized cats and humans, expiratory cycles which contained swallows had a significant reduction in abdominal EMG activity, and a greater percentage of swallows were produced during inspiration and/or respiratory phase transitions. These results suggest that: a) spinal expiratory motor pathways play an important role in the execution of swallow, and b) a more complex mechanical relationship exists between breathing and swallow than has previously been envisioned.


Subject(s)
Abdomen/physiology , Deglutition/physiology , Movement/physiology , Respiratory Mechanics/physiology , Adult , Animals , Cats , Electromyography , Esophagus/physiology , Humans , Male , Species Specificity
10.
Lung ; 193(1): 129-33, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25331536

ABSTRACT

Swallow occurs predominantly in the expiratory phase (E) of breathing. This phase preference is thought to contribute to airway protection by limiting the passage of material through the pharyngeal airway with little or no inspiratory (I) airflow. This phase preference is attributed to central interactions between the swallow and breathing pattern generators. We speculated that changes in peripheral mechanical factors would influence the respiratory phase preference for swallow initiation. We induced swallowing in anesthetized spontaneously breathing cats by injection of water into the oropharynx. In animals with intact abdomens, 83 % of swallows were initiated during E, 7 % during I, 7 % during E-I phase transition, and 3 % during I-E transition. In animals with open anterior midline laparotomy, only 38 % of swallows were initiated during E, 33 % during I, 17 % during the E-I transition, and 12 % during I-E. The results support an important role for feedback from somatic and/or visceral thoraco-abdominal mechanoreceptors for swallow-breathing coordination after laparotomy.


Subject(s)
Deglutition , Diaphragm/innervation , Esophagus/innervation , Laparotomy , Mechanoreceptors/physiology , Mechanotransduction, Cellular , Respiration , Respiratory System/innervation , Animals , Cats , Exhalation , Inhalation , Male , Time Factors
11.
PLoS One ; 9(8): e106121, 2014.
Article in English | MEDLINE | ID: mdl-25171095

ABSTRACT

OBJECTIVE: The pharyngeal phase of swallow has been thought to be a stereotypical motor behavior. STUDY DESIGN: This is a prospective, preclinical, hypothesis driven, one group by three-task design. METHODS: We sought to compare the effects of pharyngeal swabbing, water only, and water plus punctate mechanical stimulation on the spatiotemporal features of the pharyngeal phase of swallow in the cat. Swallow was elicited under these three conditions in six anaesthetized cats. Electromyographic activity was recorded from seven muscles used to evaluate swallow: mylohyoid, geniohyoid, thyrohyoid, thyroarytenoid, thyropharyngeus, cricopharyngeus, and parasternal. RESULTS: Pharyngeal swabbing in comparison to the other stimulus conditions, results in decreases in post-swallow cricopharyngeus activity (upper esophageal sphincter); a significant increase in parasternal (schluckatmung; swallow breath) activity; and increases in thyrohyoid (laryngeal elevator), thyroarytenoid (laryngeal adductor) and parasternal muscles burst duration. Pearson correlations were found of moderate strength between 19% of burst duration comparisons and weak to moderate relationships between 29% of burst amplitude comparisons. However, there were no positive significant relationships between phase durations and electromyogram amplitudes between any of the muscles studied during swallow. CONCLUSIONS: The results support the concept that a stereotypical behavior, such as pharyngeal swallowing in animal models, can be modified by sensory feedback from pharyngeal mucosal mechanoreceptors. Furthermore, differences in swallow phase durations and amplitudes provide evidence that separate regulatory mechanisms exist which regulate spatial and temporal aspects of the behavior.


Subject(s)
Deglutition/physiology , Muscle Contraction/physiology , Neck Muscles/physiology , Pharynx/physiology , Animals , Cats , Electromyography
12.
Respir Physiol Neurobiol ; 189(3): 543-51, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-23998999

ABSTRACT

Airway protections is the prevention and/or removal of material by behaviors such as cough and swallow. We hypothesized these behaviors are coordinated to respond to aspiration. Anesthetized animals were challenged with simulated aspiration that induced both coughing and swallowing. Electromyograms of upper airway and respiratory muscles together with esophageal pressure were recorded to identify and evaluate cough and swallow. During simulated aspiration, both cough and swallow intensity increased and swallow duration decreased consistent with rapid pharyngeal clearance. Phase restriction between cough and swallow was observed; swallow was restricted to the E2 phase of cough. These results support three main conclusions: 1) the cough and swallow pattern generators are tightly coordinated so as to generate a protective meta-behavior; 2) the trachea provides feedback on swallow quality, informing the brainstem about aspiration incidences; and 3) the larynx and upper esophageal sphincter act as two separate valves controlling the direction of positive and negative pressures from the upper airway into the thorax.


Subject(s)
Cough/complications , Deglutition/physiology , Respiratory System/physiopathology , Animals , Cats , Cough/etiology , Cough/pathology , Electromyography , Male , Physical Stimulation/adverse effects , Respiratory Muscles/physiopathology
13.
J Appl Physiol (1985) ; 111(3): 861-73, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21719729

ABSTRACT

We tested the hypothesis, motivated in part by a coordinated computational cough network model, that alterations of mean systemic arterial blood pressure (BP) influence the excitability and motor pattern of cough. Model simulations predicted suppression of coughing by stimulation of arterial baroreceptors. In vivo experiments were conducted on anesthetized spontaneously breathing cats. Cough was elicited by mechanical stimulation of the intrathoracic airways. Electromyograms (EMG) of inspiratory parasternal, expiratory abdominal, laryngeal posterior cricoarytenoid (PCA), and thyroarytenoid muscles along with esophageal pressure (EP) and BP were recorded. Transiently elevated BP significantly reduced cough number, cough-related inspiratory, and expiratory amplitudes of EP, peak parasternal and abdominal EMG, and maximum of PCA EMG during the expulsive phase of cough, and prolonged the cough inspiratory and expiratory phases as well as cough cycle duration compared with control coughs. Latencies from the beginning of stimulation to the onset of cough-related diaphragm and abdominal activities were increased. Increases in BP also elicited bradycardia and isocapnic bradypnea. Reductions in BP increased cough number; elevated inspiratory EP amplitude and parasternal, abdominal, and inspiratory PCA EMG amplitudes; decreased total cough cycle duration; shortened the durations of the cough expiratory phase and cough-related abdominal discharge; and shortened cough latency compared with control coughs. Reduced BP also produced tachycardia, tachypnea, and hypocapnic hyperventilation. These effects of BP on coughing likely originate from interactions between barosensitive and respiratory brainstem neuronal networks, particularly by modulation of respiratory neurons within multiple respiration/cough-related brainstem areas by baroreceptor input.


Subject(s)
Blood Pressure , Bronchi/innervation , Computer Simulation , Cough/physiopathology , Models, Cardiovascular , Models, Neurological , Respiration , Trachea/innervation , Abdominal Muscles/physiopathology , Animals , Baroreflex , Cats , Electromyography , Female , Heart Rate , Male , Neural Pathways/physiopathology , Physical Stimulation , Reaction Time , Respiratory Center/physiopathology , Respiratory Muscles/physiopathology , Time Factors
14.
J Appl Physiol (1985) ; 108(4): 858-65, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20093669

ABSTRACT

We investigated the influence of microinjection of codeine into the caudal ventral respiratory column (cVRC) on the cough reflex. Experiments were performed on 36 anesthetized spontaneously breathing cats. Electromyograms (EMGs) were recorded bilaterally from inspiratory parasternal and expiratory transversus abdominis (ABD) muscles and unilaterally from laryngeal posterior cricoarytenoid and thyroarytenoid muscles. Repetitive coughing was elicited by mechanical stimulation of the intrathoracic airways. The unilateral microinjection of codeine (3.3 mM, 20-32 nl) in the cVRC reduced cough number by 29% (P < 0.01) and expiratory cough amplitudes of esophageal pressure by 33% (P < 0.05) as well as both ipsilateral and contralateral ABD EMGs by 35% and 48% (P < 0.01 and P < 0.01, respectively). No cough depression was observed after microinjections of vehicle. There was no significant effect of microinjection of codeine in the cVRC (3.3 mM, 30-40 nl) on ABD activity induced by a microinjection of D,L-homocysteic acid (30 mM, 27-40 nl) in the same location. However, a cumulative dose of codeine (0.1 mg/kg, 330 nmol/kg) applied into the brain stem circulation through the vertebral artery reduced the ABD motor response to cVRC D,L-homocysteic acid microinjection (30 mM, 28-32 nl) by 47% (P < 0.01). These results suggest that 1) codeine can act within the cVRC to suppress cough and 2) expiratory premotoneurons within the cVRC are relatively insensitive to this opioid.


Subject(s)
Analgesics, Opioid/pharmacology , Antitussive Agents/pharmacology , Codeine/pharmacology , Cough/drug therapy , Medulla Oblongata/drug effects , Abdominal Muscles/drug effects , Abdominal Muscles/physiopathology , Anesthesia , Animals , Cats , Cough/etiology , Cough/physiopathology , Disease Models, Animal , Electromyography , Female , Medulla Oblongata/physiopathology , Microinjections , Respiratory Muscles/drug effects , Respiratory Muscles/physiopathology
15.
Cough ; 5: 12, 2009 Dec 22.
Article in English | MEDLINE | ID: mdl-20028523

ABSTRACT

The purpose of this study was to identify the spatiotemporal determinants of the cough motor pattern. We speculated that the spatial and temporal characteristics of the cough motor pattern would be regulated separately. Electromyograms (EMG) of abdominal muscles (ABD, rectus abdominis or transversus abdominis), and parasternal muscles (PS) were recorded in anesthetized cats. Repetitive coughing was produced by mechanical stimulation of the lumen of the intrathoracic trachea. Cough inspiratory (CT(I)) and expiratory (CT(E)) durations were obtained from the PS EMG. The ABD EMG burst was confined to the early part of CT(E )and was followed by a quiescent period of varying duration. As such, CT(E )was divided into two segments with CT(E1 )defined as the duration of the ABD EMG burst and CT(E2 )defined as the period of little or no EMG activity in the ABD EMG. Total cough cycle duration (CT(TOT)) was strongly correlated with CT(E2 )(r(2)>0.8), weakly correlated with CT(I )(r(2)<0.3), and not correlated with CT(E1 )(r(2)<0.2). There was no significant relationship between CT(I )and CT(E1 )or CT(E2). The magnitudes of inspiratory and expiratory motor drive during cough were only weakly correlated with each other (r(2)<0.36) and were not correlated with the duration of any phase of cough. The results support: a) separate regulation of CT(I )and CT(E), b) two distinct subphases of CT(E )(CT(E1 )and CT(E2)), c) the duration of CT(E2 )is a primary determinant of CT(TOT), and d) separate regulation of the magnitude and temporal features of the cough motor pattern.

16.
Respir Physiol Neurobiol ; 169(2): 150-6, 2009 Nov 30.
Article in English | MEDLINE | ID: mdl-19635591

ABSTRACT

Pulmonary morbidity is high following spinal cord injury and is due, in part, to impairment of airway protective behaviors. These airway protective behaviors include augmented breaths, the cough reflex, and expiration reflexes. Functional recovery of these behaviors has been reported after spinal cord injury. In humans, evidence for functional recovery is restricted to alterations in motor strategy and changes in the frequency of occurrence of these behaviors. In animal models, compensatory alterations in motor strategy have been identified. Crossed descending respiratory motor pathways at the thoracic spinal cord levels exist that are composed of crossed premotor axons, local circuit interneurons, and propriospinal neurons. These pathways can collectively form a substrate that supports maintenance and/or recovery of function, especially after asymmetric spinal cord injury. Local sprouting of premotor axons in the thoracic spinal cord also can occur following chronic spinal cord injury. These mechanisms may contribute to functional resiliency of the cough reflex that has been observed following chronic spinal cord injury in the cat.


Subject(s)
Airway Remodeling/physiology , Recovery of Function/physiology , Spinal Cord Injuries/pathology , Animals , Disease Models, Animal , Humans , Respiratory Muscles/physiopathology , Respiratory Paralysis/physiopathology , Spinal Cord/physiopathology , Spinal Cord Injuries/physiopathology , Thoracic Vertebrae
17.
Cough ; 4: 1, 2008 Apr 28.
Article in English | MEDLINE | ID: mdl-18442388

ABSTRACT

Fifty spontaneously breathing pentobarbital-anesthetized cats were used to determine the incidence rate and parameters of short reflex expirations induced by mechanical stimulation of the tracheal mucosa (ERt). The mechanical stimuli evoked coughs; in addition, 67.6% of the stimulation trials began with ERt. The expiration reflex mechanically induced from the glottis (ERg) was also analyzed (99.5% incidence, p < 0.001 compared to the incidence of ERt). We found that the amplitudes of abdominal, laryngeal abductor posterior cricoarytenoid, and laryngeal adductor thyroarytenoid electromyograms (EMG) were significantly enhanced in ERg relative to ERt. Peak intrathoracic pressure (esophageal or intra-pleural pressure) was higher during ERg than ERt. The interval between the peak in EMG activity of the posterior cricoarytenoid muscle and that of the EMG of abdominal muscles was lower in ERt compared to ERg. The duration of thyroarytenoid EMG activity associated with ERt was shorter than that in ERg. All other temporal features of the pattern of abdominal, posterior cricoarytenoid, and thyroarytenoid muscles EMGs were equivalent in ERt and ERg.In an additional 8 cats, the effect of codeine administered via the vertebral artery was tested. Codeine, in a dose (0.03 mg/kg) that markedly suppressed cough did not significantly alter either the incidence rate or magnitudes of ERt.In the anesthetized cat the ERt induced by mechanical stimulation of the trachea was similar to the ERg from the glottis. These two reflex responses differ substantially only in the frequency of occurrence in response to mechanical stimulus and in the intensity of motor output.

18.
J Appl Physiol (1985) ; 102(3): 1014-21, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17138836

ABSTRACT

The caudal ventral respiratory column (cVRC) contains premotor expiratory neurons that play an important role in cough-related expiratory activity of chest wall and abdominal muscles. Microinjection of d,l-homocysteic acid (DLH) was used to test the hypothesis that local activation of cVRC neurons can suppress the cough reflex. DLH (20-50 mM, 10-30 nl) was injected into the region of cVRC in nine anesthetized spontaneously breathing cats. Repetitive coughing was elicited by mechanical stimulation of the intrathoracic airways. Electromyograms (EMG) were recorded bilaterally from inspiratory parasternal and expiratory transversus abdominis (ABD) and unilaterally from laryngeal posterior cricoarytenoid and thyroarytenoid muscles. Unilateral microinjection of DLH (1-1.5 nmol) elicited bilateral increases in tonic and phasic respiratory ABD EMG activity, and it altered the respiratory pattern and laryngeal motor activities. However, DLH also decreased cough frequency by 51 +/- 7% compared with control (P < 0.001) and the amplitude of the contralateral (-35 +/- 3%; P < 0.001) and ipsilateral (-34 +/- 5%; P < 0.001) ABD EMGs during postinjection coughs compared with control. The cough alterations were much less pronounced after microinjection of a lower dose of DLH (0.34-0.8 nmol). No cough depression was observed after microinjections of vehicle. These results suggest that an endogenous cough suppressant neuronal network in the region of the cVRC may exist, and this network may be involved in the control of cough reflex excitability.


Subject(s)
Cough/physiopathology , Medulla Oblongata/physiology , Neurons, Efferent/physiology , Animals , Cats , Female , Homocysteine/analogs & derivatives , Microinjections
SELECTION OF CITATIONS
SEARCH DETAIL
...