Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroinflammation ; 20(1): 20, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36721258

ABSTRACT

Chronic microglia activation post-stroke is associated with worse neurological and cognitive outcomes. However, measurement of microglia activation in vivo is currently limited. Plasma derived extracellular vesicles (EVs) are cell-specific indicators that may allow for non-invasive measurement of microglia phenotype. The aim of this study was to identify activation-state specific microglia EVs (MEVs) in vitro followed by validation in an experimental stroke model. Following pro-inflammatory activation, MEVs contain the microglia protein TMEM119 alongside increased expression of the Toll-like receptor 4 co-receptor CD14. Immunoprecipitation followed by fluorescent nanoparticle tracking analysis (ONI Nanoimager) was used to confirm the isolation of TMEM119+/CD14+ EVs from rat plasma. Electron microscopy confirmed that TMEM119 and CD14 localize to the MEV membrane. To model ischemia, plasma was collected from 3-month wildtype Fischer344 rats prior to, 7 and 28 days after endothelin-1 or saline injection into the dorsal right striatum. Fluorescently labelled MEVs were directly measured in the plasma using nanoflow cytometry (Apogee A60 Microplus). We report a significant increase in circulating TMEM119+/CD14+ EVs 28-days post-stroke in comparison to baseline levels and saline-injected rats, which correlated weakly with stroke volume. TMEM119+/MHC-II+ EVs were also increased post-stroke in comparison to baseline and saline-injected animals. This study is the first to describe an EV biomarker of activated microglia detected directly in plasma following stroke and represents a future tool for the measurement of microglia activity in vivo.


Subject(s)
Extracellular Vesicles , Microglia , Stroke , Animals , Rats , Biomarkers , Corpus Striatum , Phenotype
2.
Neurobiol Dis ; 177: 106001, 2023 02.
Article in English | MEDLINE | ID: mdl-36646389

ABSTRACT

The brain's response to acute injury is characterized by increased permeability of the blood-brain barrier (BBB) and pro-inflammatory microglia signaling, both of which have been linked to poor cognitive outcomes and neurological disease. The damaged BBB has increased leakiness, allowing serum proteins like fibrinogen into the brain, which interacts with local cells in a deleterious manner. At the same time, in response to injury, microglia demonstrate increased NLRP3 inflammasome activity and heightened release of pro-inflammatory cytokines. The relationship between increased fibrinogen uptake and microglial inflammasome signaling in the injured brain has not been well described. In this work, we investigate fibrinogen mediated NLRP3 inflammasome priming of BV-2 cells and primary adult microglia and propose a role for extracellular vesicles (EVs) as propagators of this interaction. Following exposure to fibrinogen microglia significantly upregulate transcription of IL-1ß, IL-6, NLRP3 and other pro-inflammatory cytokines which was sustained by repeated fibrinogen exposure. Inhibition of fibrinogen mediated NLRP3 signaling was achieved at the transcriptional and assembly level using cannabidiol (CBD) and the NLRP3 inhibitor MCC950, respectively. EVs released following NLRP3 priming carry IL-1ß, IL-18 mRNA and fibrinogen, propagate inflammatory signaling and can be detected in the circulation following BBB disruption in a preclinical stroke model. In conclusion, the interplay between fibrinogen extravasation, microglial NLRP3 signaling, and EV release can perpetuate chronic pro-inflammatory signaling and represents a novel method of inflammatory propagation.


Subject(s)
Extracellular Vesicles , Inflammasomes , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Microglia/metabolism , Blood-Brain Barrier/metabolism , Fibrinogen/metabolism , Cytokines/metabolism , Inflammation/metabolism , Extracellular Vesicles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...