Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 7302, 2023 05 05.
Article in English | MEDLINE | ID: mdl-37147458

ABSTRACT

The study objective was to evaluate the effects of the addition of exogenous protease on the fermentation and nutritive value of rehydrated corn and sorghum grain silages during various storage periods. Treatments were applied using a 2 × 6 × 3 factorial combination, with 2 types of rehydrated grains (corn and sorghum), 6 doses of the enzyme (0, 0.3, 0.6, 0.9, 1.2, and 1.5%, based on natural matter) and 3 fermentation periods (0, 60, and 90 days) in a completely randomized design, with 4 replications. The protease aspergilopepsin I, of fungal origin, produced by Aspergillus niger, was used. The lactic acid concentration increased linearly as the enzyme dose increased in corn (CG) and sorghum (SG) grain silages, at 60 and 90 days of fermentation. There was an increase in the concentrations of ammonia nitrogen and soluble protein, as well as the in situ starch digestibility in rehydrated CG and SG silages, compared to the treatment without the addition of protease. The addition of 0.3% exogenous protease at the moment of CG ensiling and 0.5% in rehydrated SG increased the proteolytic activity during fermentation, providing an increase in in situ starch digestibility in a shorter storage time.


Subject(s)
Silage , Sorghum , Silage/microbiology , Peptide Hydrolases/metabolism , Zea mays/metabolism , Sorghum/metabolism , Fermentation , Nutritive Value , Starch/metabolism
2.
PLoS One ; 17(1): e0262270, 2022.
Article in English | MEDLINE | ID: mdl-35081143

ABSTRACT

Coffee beans contain high polyphenol content, which have the potential to modulate the intestinal microbiota, and possibly attenuate weight gain and the associated dyslipidemia. This study investigated the effect of freeze-dried coffee solution (FCS) consumption on physiological parameters, lipid profile, and microbiota of Wistar rats fed a high-fat diet (HF) or control diet (CT). FCS combined with a high-fat diet increased the fecal and cecal Bifidobacterium spp. population and decreased the cecal Escherichia coli population and intestinal Il1b mRNA level. Regardless of the diet type, FCS increased the serum high-density lipoprotein cholesterol (HDL-C); however, it did not affect body weight, food intake, low-density lipoprotein, triglycerides, fecal bile acids, and intestinal Il6 mRNA levels. The high-fat diet increased weight gain, hepatic cholesterol and triglycerides, fecal bile acids, and the fecal and cecal Lactobacillus spp. population, and reduced food intake, the fecal E. coli population, and intestinal Il6 mRNA level. The results suggest that FCS consumption exhibits positive health effects in rats fed a high-fat diet by increasing Bifidobacterium spp. population and HDL-C reverse cholesterol transport, and by reducing Il1b mRNA level. However, FCS administration at a dose of 0.39 g/100 g diet over an eight-week period was not effective in controlling food intake, and consequently, preventing weight gain in rats of high-fat diet-induced obesity model.


Subject(s)
Coffee , Gastrointestinal Microbiome/drug effects , Inflammation/metabolism , Lipid Metabolism/drug effects , Lipids/blood , Obesity/metabolism , Animals , Body Weight/drug effects , Diet, High-Fat/adverse effects , Eating/drug effects , Male , Obesity/etiology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...